Metamath Proof Explorer


Theorem lincsumcl

Description: The sum of two linear combinations is a linear combination, see also the proof in Lang p. 129. (Contributed by AV, 4-Apr-2019) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypothesis lincsumcl.b + ˙ = + M
Assertion lincsumcl M LMod V 𝒫 Base M C M LinCo V D M LinCo V C + ˙ D M LinCo V

Proof

Step Hyp Ref Expression
1 lincsumcl.b + ˙ = + M
2 eqid Base M = Base M
3 eqid Scalar M = Scalar M
4 eqid Base Scalar M = Base Scalar M
5 2 3 4 lcoval M LMod V 𝒫 Base M C M LinCo V C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V
6 2 3 4 lcoval M LMod V 𝒫 Base M D M LinCo V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V
7 5 6 anbi12d M LMod V 𝒫 Base M C M LinCo V D M LinCo V C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V
8 simpll M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod
9 simpll C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C Base M
10 9 adantl M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C Base M
11 simprl C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V D Base M
12 11 adantl M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V D Base M
13 2 1 lmodvacl M LMod C Base M D Base M C + ˙ D Base M
14 8 10 12 13 syl3anc M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D Base M
15 3 lmodfgrp M LMod Scalar M Grp
16 15 grpmndd M LMod Scalar M Mnd
17 16 adantr M LMod V 𝒫 Base M Scalar M Mnd
18 17 adantl y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M Scalar M Mnd
19 simpr M LMod V 𝒫 Base M V 𝒫 Base M
20 19 adantl y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M V 𝒫 Base M
21 simpll y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M y Base Scalar M V
22 simpl x Base Scalar M V finSupp 0 Scalar M x D = x linC M V x Base Scalar M V
23 21 22 anim12i y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V y Base Scalar M V x Base Scalar M V
24 23 adantr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M y Base Scalar M V x Base Scalar M V
25 eqid + Scalar M = + Scalar M
26 4 25 ofaddmndmap Scalar M Mnd V 𝒫 Base M y Base Scalar M V x Base Scalar M V y + Scalar M f x Base Scalar M V
27 18 20 24 26 syl3anc y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M y + Scalar M f x Base Scalar M V
28 16 anim1i M LMod V 𝒫 Base M Scalar M Mnd V 𝒫 Base M
29 28 adantl y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M Scalar M Mnd V 𝒫 Base M
30 simprl y Base Scalar M V finSupp 0 Scalar M y C = y linC M V finSupp 0 Scalar M y
31 30 adantr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M finSupp 0 Scalar M y
32 simprl x Base Scalar M V finSupp 0 Scalar M x D = x linC M V finSupp 0 Scalar M x
33 31 32 anim12i y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V finSupp 0 Scalar M y finSupp 0 Scalar M x
34 33 adantr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M finSupp 0 Scalar M y finSupp 0 Scalar M x
35 4 mndpfsupp Scalar M Mnd V 𝒫 Base M y Base Scalar M V x Base Scalar M V finSupp 0 Scalar M y finSupp 0 Scalar M x finSupp 0 Scalar M y + Scalar M f x
36 29 24 34 35 syl3anc y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M finSupp 0 Scalar M y + Scalar M f x
37 oveq12 C = y linC M V D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
38 37 expcom D = x linC M V C = y linC M V C + ˙ D = y linC M V + ˙ x linC M V
39 38 adantl finSupp 0 Scalar M x D = x linC M V C = y linC M V C + ˙ D = y linC M V + ˙ x linC M V
40 39 adantl x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C = y linC M V C + ˙ D = y linC M V + ˙ x linC M V
41 40 com12 C = y linC M V x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
42 41 adantl finSupp 0 Scalar M y C = y linC M V x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
43 42 adantl y Base Scalar M V finSupp 0 Scalar M y C = y linC M V x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
44 43 adantr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
45 44 imp y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D = y linC M V + ˙ x linC M V
46 45 adantr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M C + ˙ D = y linC M V + ˙ x linC M V
47 simpr y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M M LMod V 𝒫 Base M
48 eqid y linC M V = y linC M V
49 eqid x linC M V = x linC M V
50 1 48 49 3 4 25 lincsum M LMod V 𝒫 Base M y Base Scalar M V x Base Scalar M V finSupp 0 Scalar M y finSupp 0 Scalar M x y linC M V + ˙ x linC M V = y + Scalar M f x linC M V
51 47 24 34 50 syl3anc y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M y linC M V + ˙ x linC M V = y + Scalar M f x linC M V
52 46 51 eqtrd y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M C + ˙ D = y + Scalar M f x linC M V
53 breq1 s = y + Scalar M f x finSupp 0 Scalar M s finSupp 0 Scalar M y + Scalar M f x
54 oveq1 s = y + Scalar M f x s linC M V = y + Scalar M f x linC M V
55 54 eqeq2d s = y + Scalar M f x C + ˙ D = s linC M V C + ˙ D = y + Scalar M f x linC M V
56 53 55 anbi12d s = y + Scalar M f x finSupp 0 Scalar M s C + ˙ D = s linC M V finSupp 0 Scalar M y + Scalar M f x C + ˙ D = y + Scalar M f x linC M V
57 56 rspcev y + Scalar M f x Base Scalar M V finSupp 0 Scalar M y + Scalar M f x C + ˙ D = y + Scalar M f x linC M V s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
58 27 36 52 57 syl12anc y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
59 58 exp41 y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
60 59 rexlimiva y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
61 60 expd y Base Scalar M V finSupp 0 Scalar M y C = y linC M V C Base M D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
62 61 impcom C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
63 62 com13 x Base Scalar M V finSupp 0 Scalar M x D = x linC M V D Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
64 63 rexlimiva x Base Scalar M V finSupp 0 Scalar M x D = x linC M V D Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
65 64 impcom D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
66 65 impcom C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
67 66 impcom M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
68 2 3 4 lcoval M LMod V 𝒫 Base M C + ˙ D M LinCo V C + ˙ D Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
69 68 adantr M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D M LinCo V C + ˙ D Base M s Base Scalar M V finSupp 0 Scalar M s C + ˙ D = s linC M V
70 14 67 69 mpbir2and M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D M LinCo V
71 70 ex M LMod V 𝒫 Base M C Base M y Base Scalar M V finSupp 0 Scalar M y C = y linC M V D Base M x Base Scalar M V finSupp 0 Scalar M x D = x linC M V C + ˙ D M LinCo V
72 7 71 sylbid M LMod V 𝒫 Base M C M LinCo V D M LinCo V C + ˙ D M LinCo V
73 72 imp M LMod V 𝒫 Base M C M LinCo V D M LinCo V C + ˙ D M LinCo V