Description: The sum of two linear combinations is a linear combination, see also the proof in Lang p. 129. (Contributed by AV, 4-Apr-2019) (Proof shortened by AV, 28-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lincsumcl.b | |
|
Assertion | lincsumcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincsumcl.b | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 2 3 4 | lcoval | |
6 | 2 3 4 | lcoval | |
7 | 5 6 | anbi12d | |
8 | simpll | |
|
9 | simpll | |
|
10 | 9 | adantl | |
11 | simprl | |
|
12 | 11 | adantl | |
13 | 2 1 | lmodvacl | |
14 | 8 10 12 13 | syl3anc | |
15 | 3 | lmodfgrp | |
16 | 15 | grpmndd | |
17 | 16 | adantr | |
18 | 17 | adantl | |
19 | simpr | |
|
20 | 19 | adantl | |
21 | simpll | |
|
22 | simpl | |
|
23 | 21 22 | anim12i | |
24 | 23 | adantr | |
25 | eqid | |
|
26 | 4 25 | ofaddmndmap | |
27 | 18 20 24 26 | syl3anc | |
28 | 16 | anim1i | |
29 | 28 | adantl | |
30 | simprl | |
|
31 | 30 | adantr | |
32 | simprl | |
|
33 | 31 32 | anim12i | |
34 | 33 | adantr | |
35 | 4 | mndpfsupp | |
36 | 29 24 34 35 | syl3anc | |
37 | oveq12 | |
|
38 | 37 | expcom | |
39 | 38 | adantl | |
40 | 39 | adantl | |
41 | 40 | com12 | |
42 | 41 | adantl | |
43 | 42 | adantl | |
44 | 43 | adantr | |
45 | 44 | imp | |
46 | 45 | adantr | |
47 | simpr | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | 1 48 49 3 4 25 | lincsum | |
51 | 47 24 34 50 | syl3anc | |
52 | 46 51 | eqtrd | |
53 | breq1 | |
|
54 | oveq1 | |
|
55 | 54 | eqeq2d | |
56 | 53 55 | anbi12d | |
57 | 56 | rspcev | |
58 | 27 36 52 57 | syl12anc | |
59 | 58 | exp41 | |
60 | 59 | rexlimiva | |
61 | 60 | expd | |
62 | 61 | impcom | |
63 | 62 | com13 | |
64 | 63 | rexlimiva | |
65 | 64 | impcom | |
66 | 65 | impcom | |
67 | 66 | impcom | |
68 | 2 3 4 | lcoval | |
69 | 68 | adantr | |
70 | 14 67 69 | mpbir2and | |
71 | 70 | ex | |
72 | 7 71 | sylbid | |
73 | 72 | imp | |