| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngring |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | frlmlmod |  | 
						
							| 4 | 1 3 | sylan |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | lssmre |  | 
						
							| 8 | 4 7 | syl |  | 
						
							| 9 | 8 | 3adant3 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 2 | frlmsca |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 | 12 13 | eqeltrrd |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | islvec |  | 
						
							| 17 | 4 14 16 | sylanbrc |  | 
						
							| 18 | 6 10 5 | lssacsex |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | simprd |  | 
						
							| 21 | 20 | 3adant3 |  | 
						
							| 22 |  | dif0 |  | 
						
							| 23 | 22 | linds1 |  | 
						
							| 24 | 23 | 3ad2ant3 |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 2 5 | uvcff |  | 
						
							| 27 | 1 26 | sylan |  | 
						
							| 28 | 27 | frnd |  | 
						
							| 29 | 28 22 | sseqtrrdi |  | 
						
							| 30 | 29 | 3adant3 |  | 
						
							| 31 | 5 | linds1 |  | 
						
							| 32 | 31 | 3ad2ant3 |  | 
						
							| 33 |  | un0 |  | 
						
							| 34 | 33 | fveq2i |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 6 35 10 | mrclsp |  | 
						
							| 37 | 4 36 | syl |  | 
						
							| 38 | 37 | fveq1d |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 2 25 39 | frlmlbs |  | 
						
							| 41 | 1 40 | sylan |  | 
						
							| 42 | 5 39 35 | lbssp |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 | 38 43 | eqtr3d |  | 
						
							| 45 | 34 44 | eqtrid |  | 
						
							| 46 | 45 | 3adant3 |  | 
						
							| 47 | 32 46 | sseqtrrd |  | 
						
							| 48 |  | un0 |  | 
						
							| 49 |  | drngnzr |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 12 50 | eqeltrrd |  | 
						
							| 52 | 4 51 | jca |  | 
						
							| 53 | 35 15 | lindsind2 |  | 
						
							| 54 | 53 | 3expa |  | 
						
							| 55 | 52 54 | sylanl1 |  | 
						
							| 56 | 37 | fveq1d |  | 
						
							| 57 | 56 | eleq2d |  | 
						
							| 58 | 57 | ad2antrr |  | 
						
							| 59 | 55 58 | mtbid |  | 
						
							| 60 | 59 | ralrimiva |  | 
						
							| 61 | 60 | 3impa |  | 
						
							| 62 | 10 11 | ismri2 |  | 
						
							| 63 | 8 31 62 | syl2an |  | 
						
							| 64 | 63 | 3impa |  | 
						
							| 65 | 61 64 | mpbird |  | 
						
							| 66 | 48 65 | eqeltrid |  | 
						
							| 67 |  | simpr |  | 
						
							| 68 | 25 | uvcendim |  | 
						
							| 69 | 49 68 | sylan |  | 
						
							| 70 |  | enfi |  | 
						
							| 71 | 69 70 | syl |  | 
						
							| 72 | 67 71 | mpbid |  | 
						
							| 73 | 72 | olcd |  | 
						
							| 74 | 73 | 3adant3 |  | 
						
							| 75 | 9 10 11 21 24 30 47 66 74 | mreexexd |  | 
						
							| 76 |  | simpl |  | 
						
							| 77 |  | ovex |  | 
						
							| 78 | 77 | rnex |  | 
						
							| 79 |  | elpwi |  | 
						
							| 80 |  | ssdomg |  | 
						
							| 81 | 78 79 80 | mpsyl |  | 
						
							| 82 |  | endomtr |  | 
						
							| 83 | 76 81 82 | syl2anr |  | 
						
							| 84 | 83 | rexlimiva |  | 
						
							| 85 | 75 84 | syl |  | 
						
							| 86 | 69 | ensymd |  | 
						
							| 87 | 86 | 3adant3 |  | 
						
							| 88 |  | domentr |  | 
						
							| 89 | 85 87 88 | syl2anc |  |