Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
|
2 |
|
drngring |
|
3 |
|
eqid |
|
4 |
3
|
frlmlmod |
|
5 |
2 4
|
sylan |
|
6 |
|
eqid |
|
7 |
6
|
linds1 |
|
8 |
|
eqid |
|
9 |
6 8
|
lspssv |
|
10 |
5 7 9
|
syl2an |
|
11 |
10
|
3impa |
|
12 |
11
|
adantr |
|
13 |
|
bren2 |
|
14 |
13
|
simprbi |
|
15 |
|
snfi |
|
16 |
|
simp2 |
|
17 |
|
lindsdom |
|
18 |
|
domfi |
|
19 |
16 17 18
|
syl2anc |
|
20 |
|
unfi |
|
21 |
15 19 20
|
sylancr |
|
22 |
21
|
adantr |
|
23 |
|
vex |
|
24 |
23
|
snss |
|
25 |
6 8
|
lspssid |
|
26 |
5 7 25
|
syl2an |
|
27 |
26
|
3impa |
|
28 |
27
|
sseld |
|
29 |
24 28
|
syl5bir |
|
30 |
29
|
con3dimp |
|
31 |
|
nsspssun |
|
32 |
30 31
|
sylib |
|
33 |
|
php3 |
|
34 |
22 32 33
|
syl2anc |
|
35 |
34
|
adantrl |
|
36 |
|
simpl1 |
|
37 |
|
simpl2 |
|
38 |
|
snssi |
|
39 |
38
|
adantr |
|
40 |
7
|
3ad2ant3 |
|
41 |
|
unss |
|
42 |
41
|
biimpi |
|
43 |
39 40 42
|
syl2anr |
|
44 |
|
simpr |
|
45 |
28
|
con3dimp |
|
46 |
|
difsn |
|
47 |
45 46
|
syl |
|
48 |
47
|
fveq2d |
|
49 |
44 48
|
neleqtrrd |
|
50 |
49
|
adantlr |
|
51 |
|
difsnid |
|
52 |
51
|
fveq2d |
|
53 |
52
|
eleq2d |
|
54 |
53
|
notbid |
|
55 |
54
|
biimparc |
|
56 |
55
|
adantll |
|
57 |
3
|
frlmsca |
|
58 |
|
simpl |
|
59 |
57 58
|
eqeltrrd |
|
60 |
|
eqid |
|
61 |
60
|
islvec |
|
62 |
5 59 61
|
sylanbrc |
|
63 |
62
|
3adant3 |
|
64 |
63
|
ad4antr |
|
65 |
7
|
ssdifssd |
|
66 |
65
|
3ad2ant3 |
|
67 |
66
|
ad4antr |
|
68 |
|
simp-4r |
|
69 |
|
difundir |
|
70 |
69
|
equncomi |
|
71 |
|
elsni |
|
72 |
71
|
eleq1d |
|
73 |
72
|
notbid |
|
74 |
45 73
|
syl5ibrcom |
|
75 |
74
|
con2d |
|
76 |
75
|
imp |
|
77 |
|
difsn |
|
78 |
76 77
|
syl |
|
79 |
78
|
uneq2d |
|
80 |
70 79
|
syl5eq |
|
81 |
80
|
fveq2d |
|
82 |
81
|
eleq2d |
|
83 |
82
|
adantllr |
|
84 |
83
|
biimpa |
|
85 |
|
drngnzr |
|
86 |
85
|
adantr |
|
87 |
57 86
|
eqeltrrd |
|
88 |
5 87
|
jca |
|
89 |
88
|
anim1i |
|
90 |
89
|
3impa |
|
91 |
8 60
|
lindsind2 |
|
92 |
91
|
3expa |
|
93 |
90 92
|
sylan |
|
94 |
93
|
ad5ant14 |
|
95 |
84 94
|
eldifd |
|
96 |
|
eqid |
|
97 |
6 96 8
|
lspsolv |
|
98 |
64 67 68 95 97
|
syl13anc |
|
99 |
56 98
|
mtand |
|
100 |
99
|
ralrimiva |
|
101 |
|
ralunb |
|
102 |
|
id |
|
103 |
|
sneq |
|
104 |
103
|
difeq2d |
|
105 |
|
uncom |
|
106 |
105
|
difeq1i |
|
107 |
|
difun2 |
|
108 |
106 107
|
eqtri |
|
109 |
104 108
|
eqtrdi |
|
110 |
109
|
fveq2d |
|
111 |
102 110
|
eleq12d |
|
112 |
111
|
notbid |
|
113 |
23 112
|
ralsn |
|
114 |
113
|
anbi1i |
|
115 |
101 114
|
bitri |
|
116 |
50 100 115
|
sylanbrc |
|
117 |
116
|
ex |
|
118 |
63
|
ad3antrrr |
|
119 |
|
eldifsn |
|
120 |
119
|
biimpi |
|
121 |
120
|
adantl |
|
122 |
38 7 42
|
syl2anr |
|
123 |
122
|
3ad2antl3 |
|
124 |
123
|
sselda |
|
125 |
124
|
adantr |
|
126 |
|
eqid |
|
127 |
|
eqid |
|
128 |
|
eqid |
|
129 |
6 60 126 127 128 8
|
lspsnvs |
|
130 |
118 121 125 129
|
syl3anc |
|
131 |
130
|
sseq1d |
|
132 |
5
|
3adant3 |
|
133 |
132
|
ad3antrrr |
|
134 |
|
df-3an |
|
135 |
122
|
ssdifssd |
|
136 |
6 96 8
|
lspcl |
|
137 |
5 135 136
|
syl2an |
|
138 |
137
|
anassrs |
|
139 |
134 138
|
sylanb |
|
140 |
139
|
ad2antrr |
|
141 |
|
eldifi |
|
142 |
141
|
adantl |
|
143 |
6 60 126 127
|
lmodvscl |
|
144 |
133 142 125 143
|
syl3anc |
|
145 |
6 96 8 133 140 144
|
lspsnel5 |
|
146 |
132
|
ad2antrr |
|
147 |
139
|
adantr |
|
148 |
6 96 8 146 147 124
|
lspsnel5 |
|
149 |
148
|
adantr |
|
150 |
131 145 149
|
3bitr4rd |
|
151 |
150
|
notbid |
|
152 |
151
|
biimpd |
|
153 |
152
|
ralrimdva |
|
154 |
153
|
ralimdva |
|
155 |
117 154
|
syld |
|
156 |
155
|
impr |
|
157 |
|
ovex |
|
158 |
6 126 8 60 127 128
|
islinds2 |
|
159 |
157 158
|
ax-mp |
|
160 |
43 156 159
|
sylanbrc |
|
161 |
|
lindsdom |
|
162 |
36 37 160 161
|
syl3anc |
|
163 |
|
sdomdomtr |
|
164 |
35 162 163
|
syl2anc |
|
165 |
164
|
stoic1a |
|
166 |
14 165
|
sylan2 |
|
167 |
|
iman |
|
168 |
166 167
|
sylibr |
|
169 |
168
|
ssrdv |
|
170 |
12 169
|
eqssd |
|
171 |
|
eqid |
|
172 |
6 171 8
|
islbs4 |
|
173 |
1 170 172
|
sylanbrc |
|