| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl3 |
|
| 2 |
|
drngring |
|
| 3 |
|
eqid |
|
| 4 |
3
|
frlmlmod |
|
| 5 |
2 4
|
sylan |
|
| 6 |
|
eqid |
|
| 7 |
6
|
linds1 |
|
| 8 |
|
eqid |
|
| 9 |
6 8
|
lspssv |
|
| 10 |
5 7 9
|
syl2an |
|
| 11 |
10
|
3impa |
|
| 12 |
11
|
adantr |
|
| 13 |
|
bren2 |
|
| 14 |
13
|
simprbi |
|
| 15 |
|
snfi |
|
| 16 |
|
simp2 |
|
| 17 |
|
lindsdom |
|
| 18 |
|
domfi |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
|
unfi |
|
| 21 |
15 19 20
|
sylancr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
vex |
|
| 24 |
23
|
snss |
|
| 25 |
6 8
|
lspssid |
|
| 26 |
5 7 25
|
syl2an |
|
| 27 |
26
|
3impa |
|
| 28 |
27
|
sseld |
|
| 29 |
24 28
|
biimtrrid |
|
| 30 |
29
|
con3dimp |
|
| 31 |
|
nsspssun |
|
| 32 |
30 31
|
sylib |
|
| 33 |
|
php3 |
|
| 34 |
22 32 33
|
syl2anc |
|
| 35 |
34
|
adantrl |
|
| 36 |
|
simpl1 |
|
| 37 |
|
simpl2 |
|
| 38 |
|
snssi |
|
| 39 |
38
|
adantr |
|
| 40 |
7
|
3ad2ant3 |
|
| 41 |
|
unss |
|
| 42 |
41
|
biimpi |
|
| 43 |
39 40 42
|
syl2anr |
|
| 44 |
|
simpr |
|
| 45 |
28
|
con3dimp |
|
| 46 |
|
difsn |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
fveq2d |
|
| 49 |
44 48
|
neleqtrrd |
|
| 50 |
49
|
adantlr |
|
| 51 |
|
difsnid |
|
| 52 |
51
|
fveq2d |
|
| 53 |
52
|
eleq2d |
|
| 54 |
53
|
notbid |
|
| 55 |
54
|
biimparc |
|
| 56 |
55
|
adantll |
|
| 57 |
3
|
frlmsca |
|
| 58 |
|
simpl |
|
| 59 |
57 58
|
eqeltrrd |
|
| 60 |
|
eqid |
|
| 61 |
60
|
islvec |
|
| 62 |
5 59 61
|
sylanbrc |
|
| 63 |
62
|
3adant3 |
|
| 64 |
63
|
ad4antr |
|
| 65 |
7
|
ssdifssd |
|
| 66 |
65
|
3ad2ant3 |
|
| 67 |
66
|
ad4antr |
|
| 68 |
|
simp-4r |
|
| 69 |
|
difundir |
|
| 70 |
69
|
equncomi |
|
| 71 |
|
elsni |
|
| 72 |
71
|
eleq1d |
|
| 73 |
72
|
notbid |
|
| 74 |
45 73
|
syl5ibrcom |
|
| 75 |
74
|
con2d |
|
| 76 |
75
|
imp |
|
| 77 |
|
difsn |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
uneq2d |
|
| 80 |
70 79
|
eqtrid |
|
| 81 |
80
|
fveq2d |
|
| 82 |
81
|
eleq2d |
|
| 83 |
82
|
adantllr |
|
| 84 |
83
|
biimpa |
|
| 85 |
|
drngnzr |
|
| 86 |
85
|
adantr |
|
| 87 |
57 86
|
eqeltrrd |
|
| 88 |
5 87
|
jca |
|
| 89 |
88
|
anim1i |
|
| 90 |
89
|
3impa |
|
| 91 |
8 60
|
lindsind2 |
|
| 92 |
91
|
3expa |
|
| 93 |
90 92
|
sylan |
|
| 94 |
93
|
ad5ant14 |
|
| 95 |
84 94
|
eldifd |
|
| 96 |
|
eqid |
|
| 97 |
6 96 8
|
lspsolv |
|
| 98 |
64 67 68 95 97
|
syl13anc |
|
| 99 |
56 98
|
mtand |
|
| 100 |
99
|
ralrimiva |
|
| 101 |
|
ralunb |
|
| 102 |
|
id |
|
| 103 |
|
sneq |
|
| 104 |
103
|
difeq2d |
|
| 105 |
|
uncom |
|
| 106 |
105
|
difeq1i |
|
| 107 |
|
difun2 |
|
| 108 |
106 107
|
eqtri |
|
| 109 |
104 108
|
eqtrdi |
|
| 110 |
109
|
fveq2d |
|
| 111 |
102 110
|
eleq12d |
|
| 112 |
111
|
notbid |
|
| 113 |
23 112
|
ralsn |
|
| 114 |
113
|
anbi1i |
|
| 115 |
101 114
|
bitri |
|
| 116 |
50 100 115
|
sylanbrc |
|
| 117 |
116
|
ex |
|
| 118 |
63
|
ad3antrrr |
|
| 119 |
|
eldifsn |
|
| 120 |
119
|
biimpi |
|
| 121 |
120
|
adantl |
|
| 122 |
38 7 42
|
syl2anr |
|
| 123 |
122
|
3ad2antl3 |
|
| 124 |
123
|
sselda |
|
| 125 |
124
|
adantr |
|
| 126 |
|
eqid |
|
| 127 |
|
eqid |
|
| 128 |
|
eqid |
|
| 129 |
6 60 126 127 128 8
|
lspsnvs |
|
| 130 |
118 121 125 129
|
syl3anc |
|
| 131 |
130
|
sseq1d |
|
| 132 |
5
|
3adant3 |
|
| 133 |
132
|
ad3antrrr |
|
| 134 |
|
df-3an |
|
| 135 |
122
|
ssdifssd |
|
| 136 |
6 96 8
|
lspcl |
|
| 137 |
5 135 136
|
syl2an |
|
| 138 |
137
|
anassrs |
|
| 139 |
134 138
|
sylanb |
|
| 140 |
139
|
ad2antrr |
|
| 141 |
|
eldifi |
|
| 142 |
141
|
adantl |
|
| 143 |
6 60 126 127
|
lmodvscl |
|
| 144 |
133 142 125 143
|
syl3anc |
|
| 145 |
6 96 8 133 140 144
|
ellspsn5b |
|
| 146 |
132
|
ad2antrr |
|
| 147 |
139
|
adantr |
|
| 148 |
6 96 8 146 147 124
|
ellspsn5b |
|
| 149 |
148
|
adantr |
|
| 150 |
131 145 149
|
3bitr4rd |
|
| 151 |
150
|
notbid |
|
| 152 |
151
|
biimpd |
|
| 153 |
152
|
ralrimdva |
|
| 154 |
153
|
ralimdva |
|
| 155 |
117 154
|
syld |
|
| 156 |
155
|
impr |
|
| 157 |
|
ovex |
|
| 158 |
6 126 8 60 127 128
|
islinds2 |
|
| 159 |
157 158
|
ax-mp |
|
| 160 |
43 156 159
|
sylanbrc |
|
| 161 |
|
lindsdom |
|
| 162 |
36 37 160 161
|
syl3anc |
|
| 163 |
|
sdomdomtr |
|
| 164 |
35 162 163
|
syl2anc |
|
| 165 |
164
|
stoic1a |
|
| 166 |
14 165
|
sylan2 |
|
| 167 |
|
iman |
|
| 168 |
166 167
|
sylibr |
|
| 169 |
168
|
ssrdv |
|
| 170 |
12 169
|
eqssd |
|
| 171 |
|
eqid |
|
| 172 |
6 171 8
|
islbs4 |
|
| 173 |
1 170 172
|
sylanbrc |
|