Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of Kreyszig p. 28. (Contributed by NM, 29-Jan-2008) (Proof shortened by Mario Carneiro, 5-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lmcau.1 | |
|
Assertion | lmcau | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcau.1 | |
|
2 | 1 | methaus | |
3 | lmfun | |
|
4 | funfvbrb | |
|
5 | 2 3 4 | 3syl | |
6 | id | |
|
7 | 1 6 | lmmbr | |
8 | 7 | biimpa | |
9 | 8 | simp1d | |
10 | simprr | |
|
11 | simplll | |
|
12 | 8 | simp2d | |
13 | 12 | ad2antrr | |
14 | rpre | |
|
15 | 14 | ad2antlr | |
16 | uzid | |
|
17 | 16 | ad2antrl | |
18 | 17 | fvresd | |
19 | 10 17 | ffvelcdmd | |
20 | 18 19 | eqeltrrd | |
21 | blhalf | |
|
22 | 11 13 15 20 21 | syl22anc | |
23 | 10 22 | fssd | |
24 | rphalfcl | |
|
25 | 8 | simp3d | |
26 | oveq2 | |
|
27 | 26 | feq3d | |
28 | 27 | rexbidv | |
29 | 28 | rspcv | |
30 | 24 25 29 | syl2im | |
31 | 30 | impcom | |
32 | uzf | |
|
33 | ffn | |
|
34 | reseq2 | |
|
35 | id | |
|
36 | 34 35 | feq12d | |
37 | 36 | rexrn | |
38 | 32 33 37 | mp2b | |
39 | 31 38 | sylib | |
40 | 23 39 | reximddv | |
41 | 40 | ralrimiva | |
42 | iscau | |
|
43 | 42 | adantr | |
44 | 9 41 43 | mpbir2and | |
45 | 44 | ex | |
46 | 5 45 | sylbid | |
47 | 46 | ssrdv | |