Metamath Proof Explorer


Theorem lmcau

Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of Kreyszig p. 28. (Contributed by NM, 29-Jan-2008) (Proof shortened by Mario Carneiro, 5-May-2014)

Ref Expression
Hypothesis lmcau.1 J=MetOpenD
Assertion lmcau D∞MetXdomtJCauD

Proof

Step Hyp Ref Expression
1 lmcau.1 J=MetOpenD
2 1 methaus D∞MetXJHaus
3 lmfun JHausFuntJ
4 funfvbrb FuntJfdomtJftJtJf
5 2 3 4 3syl D∞MetXfdomtJftJtJf
6 id D∞MetXD∞MetX
7 1 6 lmmbr D∞MetXftJtJffX𝑝𝑚tJfXy+uranfu:utJfballDy
8 7 biimpa D∞MetXftJtJffX𝑝𝑚tJfXy+uranfu:utJfballDy
9 8 simp1d D∞MetXftJtJffX𝑝𝑚
10 simprr D∞MetXftJtJfx+jfj:jtJfballDx2fj:jtJfballDx2
11 simplll D∞MetXftJtJfx+jfj:jtJfballDx2D∞MetX
12 8 simp2d D∞MetXftJtJftJfX
13 12 ad2antrr D∞MetXftJtJfx+jfj:jtJfballDx2tJfX
14 rpre x+x
15 14 ad2antlr D∞MetXftJtJfx+jfj:jtJfballDx2x
16 uzid jjj
17 16 ad2antrl D∞MetXftJtJfx+jfj:jtJfballDx2jj
18 17 fvresd D∞MetXftJtJfx+jfj:jtJfballDx2fjj=fj
19 10 17 ffvelcdmd D∞MetXftJtJfx+jfj:jtJfballDx2fjjtJfballDx2
20 18 19 eqeltrrd D∞MetXftJtJfx+jfj:jtJfballDx2fjtJfballDx2
21 blhalf D∞MetXtJfXxfjtJfballDx2tJfballDx2fjballDx
22 11 13 15 20 21 syl22anc D∞MetXftJtJfx+jfj:jtJfballDx2tJfballDx2fjballDx
23 10 22 fssd D∞MetXftJtJfx+jfj:jtJfballDx2fj:jfjballDx
24 rphalfcl x+x2+
25 8 simp3d D∞MetXftJtJfy+uranfu:utJfballDy
26 oveq2 y=x2tJfballDy=tJfballDx2
27 26 feq3d y=x2fu:utJfballDyfu:utJfballDx2
28 27 rexbidv y=x2uranfu:utJfballDyuranfu:utJfballDx2
29 28 rspcv x2+y+uranfu:utJfballDyuranfu:utJfballDx2
30 24 25 29 syl2im x+D∞MetXftJtJfuranfu:utJfballDx2
31 30 impcom D∞MetXftJtJfx+uranfu:utJfballDx2
32 uzf :𝒫
33 ffn :𝒫Fn
34 reseq2 u=jfu=fj
35 id u=ju=j
36 34 35 feq12d u=jfu:utJfballDx2fj:jtJfballDx2
37 36 rexrn Fnuranfu:utJfballDx2jfj:jtJfballDx2
38 32 33 37 mp2b uranfu:utJfballDx2jfj:jtJfballDx2
39 31 38 sylib D∞MetXftJtJfx+jfj:jtJfballDx2
40 23 39 reximddv D∞MetXftJtJfx+jfj:jfjballDx
41 40 ralrimiva D∞MetXftJtJfx+jfj:jfjballDx
42 iscau D∞MetXfCauDfX𝑝𝑚x+jfj:jfjballDx
43 42 adantr D∞MetXftJtJffCauDfX𝑝𝑚x+jfj:jfjballDx
44 9 41 43 mpbir2and D∞MetXftJtJffCauD
45 44 ex D∞MetXftJtJffCauD
46 5 45 sylbid D∞MetXfdomtJfCauD
47 46 ssrdv D∞MetXdomtJCauD