Metamath Proof Explorer


Theorem logcj

Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion logcj AA0logA=logA

Proof

Step Hyp Ref Expression
1 fveq2 A=0A=0
2 im0 0=0
3 1 2 eqtrdi A=0A=0
4 3 necon3i A0A0
5 logcl AA0logA
6 4 5 sylan2 AA0logA
7 efcj logAelogA=elogA
8 6 7 syl AA0elogA=elogA
9 eflog AA0elogA=A
10 4 9 sylan2 AA0elogA=A
11 10 fveq2d AA0elogA=A
12 8 11 eqtrd AA0elogA=A
13 cjcl AA
14 13 adantr AA0A
15 simpr AA0A0
16 15 4 syl AA0A0
17 cjne0 AA0A0
18 17 adantr AA0A0A0
19 16 18 mpbid AA0A0
20 6 cjcld AA0logA
21 6 imcld AA0logA
22 pire π
23 22 a1i AA0π
24 logimcl AA0π<logAlogAπ
25 4 24 sylan2 AA0π<logAlogAπ
26 25 simprd AA0logAπ
27 rpre A+A
28 27 renegcld A+A
29 negneg AA=A
30 29 adantr AA0A=A
31 30 eleq1d AA0AA
32 28 31 imbitrid AA0A+A
33 lognegb AA0A+logA=π
34 4 33 sylan2 AA0A+logA=π
35 reim0b AAA=0
36 35 adantr AA0AA=0
37 32 34 36 3imtr3d AA0logA=πA=0
38 37 necon3d AA0A0logAπ
39 15 38 mpd AA0logAπ
40 39 necomd AA0πlogA
41 21 23 26 40 leneltd AA0logA<π
42 ltneg logAπlogA<ππ<logA
43 21 22 42 sylancl AA0logA<ππ<logA
44 41 43 mpbid AA0π<logA
45 6 imcjd AA0logA=logA
46 44 45 breqtrrd AA0π<logA
47 25 simpld AA0π<logA
48 22 renegcli π
49 ltle πlogAπ<logAπlogA
50 48 21 49 sylancr AA0π<logAπlogA
51 47 50 mpd AA0πlogA
52 lenegcon1 πlogAπlogAlogAπ
53 22 21 52 sylancr AA0πlogAlogAπ
54 51 53 mpbid AA0logAπ
55 45 54 eqbrtrd AA0logAπ
56 ellogrn logAranloglogAπ<logAlogAπ
57 20 46 55 56 syl3anbrc AA0logAranlog
58 logeftb AA0logAranloglogA=logAelogA=A
59 14 19 57 58 syl3anc AA0logA=logAelogA=A
60 12 59 mpbird AA0logA=logA