Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpdisj.v | |
|
lshpdisj.o | |
||
lshpdisj.n | |
||
lshpdisj.p | |
||
lshpdisj.h | |
||
lshpdisj.w | |
||
lshpdisj.u | |
||
lshpdisj.x | |
||
lshpdisj.e | |
||
Assertion | lshpdisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpdisj.v | |
|
2 | lshpdisj.o | |
|
3 | lshpdisj.n | |
|
4 | lshpdisj.p | |
|
5 | lshpdisj.h | |
|
6 | lshpdisj.w | |
|
7 | lshpdisj.u | |
|
8 | lshpdisj.x | |
|
9 | lshpdisj.e | |
|
10 | lveclmod | |
|
11 | 6 10 | syl | |
12 | 11 | adantr | |
13 | 8 | adantr | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 14 15 1 16 3 | lspsnel | |
18 | 12 13 17 | syl2anc | |
19 | 1 3 4 5 11 7 8 9 | lshpnel | |
20 | 19 | ad2antrr | |
21 | eqid | |
|
22 | 6 | ad2antrr | |
23 | 21 5 11 7 | lshplss | |
24 | 23 | ad2antrr | |
25 | 8 | ad2antrr | |
26 | 11 | adantr | |
27 | simpr | |
|
28 | 8 | adantr | |
29 | 1 16 14 15 3 26 27 28 | lspsneli | |
30 | 29 | adantr | |
31 | simpr | |
|
32 | 1 2 21 3 22 24 25 30 31 | lspsnel4 | |
33 | 20 32 | mtbid | |
34 | 33 | ex | |
35 | 34 | necon4ad | |
36 | eleq1 | |
|
37 | eqeq1 | |
|
38 | 36 37 | imbi12d | |
39 | 35 38 | syl5ibrcom | |
40 | 39 | ex | |
41 | 40 | com23 | |
42 | 41 | com24 | |
43 | 42 | imp31 | |
44 | 43 | rexlimdva | |
45 | 18 44 | sylbid | |
46 | 45 | expimpd | |
47 | elin | |
|
48 | velsn | |
|
49 | 46 47 48 | 3imtr4g | |
50 | 49 | ssrdv | |
51 | 1 21 3 | lspsncl | |
52 | 11 8 51 | syl2anc | |
53 | 21 | lssincl | |
54 | 11 23 52 53 | syl3anc | |
55 | 2 21 | lss0ss | |
56 | 11 54 55 | syl2anc | |
57 | 50 56 | eqssd | |