Metamath Proof Explorer


Theorem lshpdisj

Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshpdisj.v V=BaseW
lshpdisj.o 0˙=0W
lshpdisj.n N=LSpanW
lshpdisj.p ˙=LSSumW
lshpdisj.h H=LSHypW
lshpdisj.w φWLVec
lshpdisj.u φUH
lshpdisj.x φXV
lshpdisj.e φU˙NX=V
Assertion lshpdisj φUNX=0˙

Proof

Step Hyp Ref Expression
1 lshpdisj.v V=BaseW
2 lshpdisj.o 0˙=0W
3 lshpdisj.n N=LSpanW
4 lshpdisj.p ˙=LSSumW
5 lshpdisj.h H=LSHypW
6 lshpdisj.w φWLVec
7 lshpdisj.u φUH
8 lshpdisj.x φXV
9 lshpdisj.e φU˙NX=V
10 lveclmod WLVecWLMod
11 6 10 syl φWLMod
12 11 adantr φvUWLMod
13 8 adantr φvUXV
14 eqid ScalarW=ScalarW
15 eqid BaseScalarW=BaseScalarW
16 eqid W=W
17 14 15 1 16 3 lspsnel WLModXVvNXkBaseScalarWv=kWX
18 12 13 17 syl2anc φvUvNXkBaseScalarWv=kWX
19 1 3 4 5 11 7 8 9 lshpnel φ¬XU
20 19 ad2antrr φkBaseScalarWkWX0˙¬XU
21 eqid LSubSpW=LSubSpW
22 6 ad2antrr φkBaseScalarWkWX0˙WLVec
23 21 5 11 7 lshplss φULSubSpW
24 23 ad2antrr φkBaseScalarWkWX0˙ULSubSpW
25 8 ad2antrr φkBaseScalarWkWX0˙XV
26 11 adantr φkBaseScalarWWLMod
27 simpr φkBaseScalarWkBaseScalarW
28 8 adantr φkBaseScalarWXV
29 1 16 14 15 3 26 27 28 lspsneli φkBaseScalarWkWXNX
30 29 adantr φkBaseScalarWkWX0˙kWXNX
31 simpr φkBaseScalarWkWX0˙kWX0˙
32 1 2 21 3 22 24 25 30 31 lspsnel4 φkBaseScalarWkWX0˙XUkWXU
33 20 32 mtbid φkBaseScalarWkWX0˙¬kWXU
34 33 ex φkBaseScalarWkWX0˙¬kWXU
35 34 necon4ad φkBaseScalarWkWXUkWX=0˙
36 eleq1 v=kWXvUkWXU
37 eqeq1 v=kWXv=0˙kWX=0˙
38 36 37 imbi12d v=kWXvUv=0˙kWXUkWX=0˙
39 35 38 syl5ibrcom φkBaseScalarWv=kWXvUv=0˙
40 39 ex φkBaseScalarWv=kWXvUv=0˙
41 40 com23 φv=kWXkBaseScalarWvUv=0˙
42 41 com24 φvUkBaseScalarWv=kWXv=0˙
43 42 imp31 φvUkBaseScalarWv=kWXv=0˙
44 43 rexlimdva φvUkBaseScalarWv=kWXv=0˙
45 18 44 sylbid φvUvNXv=0˙
46 45 expimpd φvUvNXv=0˙
47 elin vUNXvUvNX
48 velsn v0˙v=0˙
49 46 47 48 3imtr4g φvUNXv0˙
50 49 ssrdv φUNX0˙
51 1 21 3 lspsncl WLModXVNXLSubSpW
52 11 8 51 syl2anc φNXLSubSpW
53 21 lssincl WLModULSubSpWNXLSubSpWUNXLSubSpW
54 11 23 52 53 syl3anc φUNXLSubSpW
55 2 21 lss0ss WLModUNXLSubSpW0˙UNX
56 11 54 55 syl2anc φ0˙UNX
57 50 56 eqssd φUNX=0˙