Metamath Proof Explorer


Theorem lsmsubg

Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p ˙=LSSumG
lsmsubg.z Z=CntzG
Assertion lsmsubg TSubGrpGUSubGrpGTZUT˙USubGrpG

Proof

Step Hyp Ref Expression
1 lsmsubg.p ˙=LSSumG
2 lsmsubg.z Z=CntzG
3 simp1 TSubGrpGUSubGrpGTZUTSubGrpG
4 subgsubm TSubGrpGTSubMndG
5 3 4 syl TSubGrpGUSubGrpGTZUTSubMndG
6 simp2 TSubGrpGUSubGrpGTZUUSubGrpG
7 subgsubm USubGrpGUSubMndG
8 6 7 syl TSubGrpGUSubGrpGTZUUSubMndG
9 simp3 TSubGrpGUSubGrpGTZUTZU
10 1 2 lsmsubm TSubMndGUSubMndGTZUT˙USubMndG
11 5 8 9 10 syl3anc TSubGrpGUSubGrpGTZUT˙USubMndG
12 eqid +G=+G
13 12 1 lsmelval TSubGrpGUSubGrpGxT˙UaTbUx=a+Gb
14 13 3adant3 TSubGrpGUSubGrpGTZUxT˙UaTbUx=a+Gb
15 3 adantr TSubGrpGUSubGrpGTZUaTbUTSubGrpG
16 subgrcl TSubGrpGGGrp
17 15 16 syl TSubGrpGUSubGrpGTZUaTbUGGrp
18 eqid BaseG=BaseG
19 18 subgss TSubGrpGTBaseG
20 15 19 syl TSubGrpGUSubGrpGTZUaTbUTBaseG
21 simprl TSubGrpGUSubGrpGTZUaTbUaT
22 20 21 sseldd TSubGrpGUSubGrpGTZUaTbUaBaseG
23 6 adantr TSubGrpGUSubGrpGTZUaTbUUSubGrpG
24 18 subgss USubGrpGUBaseG
25 23 24 syl TSubGrpGUSubGrpGTZUaTbUUBaseG
26 simprr TSubGrpGUSubGrpGTZUaTbUbU
27 25 26 sseldd TSubGrpGUSubGrpGTZUaTbUbBaseG
28 eqid invgG=invgG
29 18 12 28 grpinvadd GGrpaBaseGbBaseGinvgGa+Gb=invgGb+GinvgGa
30 17 22 27 29 syl3anc TSubGrpGUSubGrpGTZUaTbUinvgGa+Gb=invgGb+GinvgGa
31 9 adantr TSubGrpGUSubGrpGTZUaTbUTZU
32 28 subginvcl TSubGrpGaTinvgGaT
33 15 21 32 syl2anc TSubGrpGUSubGrpGTZUaTbUinvgGaT
34 31 33 sseldd TSubGrpGUSubGrpGTZUaTbUinvgGaZU
35 28 subginvcl USubGrpGbUinvgGbU
36 23 26 35 syl2anc TSubGrpGUSubGrpGTZUaTbUinvgGbU
37 12 2 cntzi invgGaZUinvgGbUinvgGa+GinvgGb=invgGb+GinvgGa
38 34 36 37 syl2anc TSubGrpGUSubGrpGTZUaTbUinvgGa+GinvgGb=invgGb+GinvgGa
39 30 38 eqtr4d TSubGrpGUSubGrpGTZUaTbUinvgGa+Gb=invgGa+GinvgGb
40 12 1 lsmelvali TSubGrpGUSubGrpGinvgGaTinvgGbUinvgGa+GinvgGbT˙U
41 15 23 33 36 40 syl22anc TSubGrpGUSubGrpGTZUaTbUinvgGa+GinvgGbT˙U
42 39 41 eqeltrd TSubGrpGUSubGrpGTZUaTbUinvgGa+GbT˙U
43 fveq2 x=a+GbinvgGx=invgGa+Gb
44 43 eleq1d x=a+GbinvgGxT˙UinvgGa+GbT˙U
45 42 44 syl5ibrcom TSubGrpGUSubGrpGTZUaTbUx=a+GbinvgGxT˙U
46 45 rexlimdvva TSubGrpGUSubGrpGTZUaTbUx=a+GbinvgGxT˙U
47 14 46 sylbid TSubGrpGUSubGrpGTZUxT˙UinvgGxT˙U
48 47 ralrimiv TSubGrpGUSubGrpGTZUxT˙UinvgGxT˙U
49 3 16 syl TSubGrpGUSubGrpGTZUGGrp
50 28 issubg3 GGrpT˙USubGrpGT˙USubMndGxT˙UinvgGxT˙U
51 49 50 syl TSubGrpGUSubGrpGTZUT˙USubGrpGT˙USubMndGxT˙UinvgGxT˙U
52 11 48 51 mpbir2and TSubGrpGUSubGrpGTZUT˙USubGrpG