Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsubg.p | |
|
lsmsubg.z | |
||
Assertion | lsmsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsubg.p | |
|
2 | lsmsubg.z | |
|
3 | simp1 | |
|
4 | subgsubm | |
|
5 | 3 4 | syl | |
6 | simp2 | |
|
7 | subgsubm | |
|
8 | 6 7 | syl | |
9 | simp3 | |
|
10 | 1 2 | lsmsubm | |
11 | 5 8 9 10 | syl3anc | |
12 | eqid | |
|
13 | 12 1 | lsmelval | |
14 | 13 | 3adant3 | |
15 | 3 | adantr | |
16 | subgrcl | |
|
17 | 15 16 | syl | |
18 | eqid | |
|
19 | 18 | subgss | |
20 | 15 19 | syl | |
21 | simprl | |
|
22 | 20 21 | sseldd | |
23 | 6 | adantr | |
24 | 18 | subgss | |
25 | 23 24 | syl | |
26 | simprr | |
|
27 | 25 26 | sseldd | |
28 | eqid | |
|
29 | 18 12 28 | grpinvadd | |
30 | 17 22 27 29 | syl3anc | |
31 | 9 | adantr | |
32 | 28 | subginvcl | |
33 | 15 21 32 | syl2anc | |
34 | 31 33 | sseldd | |
35 | 28 | subginvcl | |
36 | 23 26 35 | syl2anc | |
37 | 12 2 | cntzi | |
38 | 34 36 37 | syl2anc | |
39 | 30 38 | eqtr4d | |
40 | 12 1 | lsmelvali | |
41 | 15 23 33 36 40 | syl22anc | |
42 | 39 41 | eqeltrd | |
43 | fveq2 | |
|
44 | 43 | eleq1d | |
45 | 42 44 | syl5ibrcom | |
46 | 45 | rexlimdvva | |
47 | 14 46 | sylbid | |
48 | 47 | ralrimiv | |
49 | 3 16 | syl | |
50 | 28 | issubg3 | |
51 | 49 50 | syl | |
52 | 11 48 51 | mpbir2and | |