| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmsubg.p |  | 
						
							| 2 |  | lsmsubg.z |  | 
						
							| 3 |  | submrcl |  | 
						
							| 4 | 3 | 3ad2ant1 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 | submss |  | 
						
							| 7 | 6 | 3ad2ant1 |  | 
						
							| 8 | 5 | submss |  | 
						
							| 9 | 8 | 3ad2ant2 |  | 
						
							| 10 | 5 1 | lsmssv |  | 
						
							| 11 | 4 7 9 10 | syl3anc |  | 
						
							| 12 |  | simp2 |  | 
						
							| 13 | 5 1 | lsmub1x |  | 
						
							| 14 | 7 12 13 | syl2anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | subm0cl |  | 
						
							| 17 | 16 | 3ad2ant1 |  | 
						
							| 18 | 14 17 | sseldd |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 5 19 1 | lsmelvalx |  | 
						
							| 21 | 4 7 9 20 | syl3anc |  | 
						
							| 22 | 5 19 1 | lsmelvalx |  | 
						
							| 23 | 4 7 9 22 | syl3anc |  | 
						
							| 24 | 21 23 | anbi12d |  | 
						
							| 25 |  | reeanv |  | 
						
							| 26 |  | reeanv |  | 
						
							| 27 | 4 | adantr |  | 
						
							| 28 | 7 | adantr |  | 
						
							| 29 |  | simprll |  | 
						
							| 30 | 28 29 | sseldd |  | 
						
							| 31 |  | simprlr |  | 
						
							| 32 | 28 31 | sseldd |  | 
						
							| 33 | 9 | adantr |  | 
						
							| 34 |  | simprrl |  | 
						
							| 35 | 33 34 | sseldd |  | 
						
							| 36 |  | simprrr |  | 
						
							| 37 | 33 36 | sseldd |  | 
						
							| 38 |  | simpl3 |  | 
						
							| 39 | 38 31 | sseldd |  | 
						
							| 40 | 19 2 | cntzi |  | 
						
							| 41 | 39 34 40 | syl2anc |  | 
						
							| 42 | 5 19 27 30 32 35 37 41 | mnd4g |  | 
						
							| 43 |  | simpl1 |  | 
						
							| 44 | 19 | submcl |  | 
						
							| 45 | 43 29 31 44 | syl3anc |  | 
						
							| 46 |  | simpl2 |  | 
						
							| 47 | 19 | submcl |  | 
						
							| 48 | 46 34 36 47 | syl3anc |  | 
						
							| 49 | 5 19 1 | lsmelvalix |  | 
						
							| 50 | 27 28 33 45 48 49 | syl32anc |  | 
						
							| 51 | 42 50 | eqeltrrd |  | 
						
							| 52 |  | oveq12 |  | 
						
							| 53 | 52 | eleq1d |  | 
						
							| 54 | 51 53 | syl5ibrcom |  | 
						
							| 55 | 54 | anassrs |  | 
						
							| 56 | 55 | rexlimdvva |  | 
						
							| 57 | 26 56 | biimtrrid |  | 
						
							| 58 | 57 | rexlimdvva |  | 
						
							| 59 | 25 58 | biimtrrid |  | 
						
							| 60 | 24 59 | sylbid |  | 
						
							| 61 | 60 | ralrimivv |  | 
						
							| 62 | 5 15 19 | issubm |  | 
						
							| 63 | 4 62 | syl |  | 
						
							| 64 | 11 18 61 63 | mpbir3and |  |