Description: Lemma for lspprat . In the first case of lsppratlem1 , since x e/ ( N(/) ) , also Y e. ( N{ x } ) , and since y e. ( N{ X , Y } ) C_ ( N{ X , x } ) and y e/ ( N{ x } ) , we have X e. ( N{ x , y } ) as desired. (Contributed by NM, 29-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprat.v | |
|
lspprat.s | |
||
lspprat.n | |
||
lspprat.w | |
||
lspprat.u | |
||
lspprat.x | |
||
lspprat.y | |
||
lspprat.p | |
||
lsppratlem1.o | |
||
lsppratlem1.x2 | |
||
lsppratlem1.y2 | |
||
lsppratlem3.x3 | |
||
Assertion | lsppratlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | |
|
2 | lspprat.s | |
|
3 | lspprat.n | |
|
4 | lspprat.w | |
|
5 | lspprat.u | |
|
6 | lspprat.x | |
|
7 | lspprat.y | |
|
8 | lspprat.p | |
|
9 | lsppratlem1.o | |
|
10 | lsppratlem1.x2 | |
|
11 | lsppratlem1.y2 | |
|
12 | lsppratlem3.x3 | |
|
13 | lveclmod | |
|
14 | 4 13 | syl | |
15 | 7 | snssd | |
16 | 1 3 | lspssv | |
17 | 14 15 16 | syl2anc | |
18 | 17 12 | sseldd | |
19 | 18 | snssd | |
20 | 8 | pssssd | |
21 | 6 | snssd | |
22 | 19 21 | unssd | |
23 | 1 2 3 | lspcl | |
24 | 14 22 23 | syl2anc | |
25 | df-pr | |
|
26 | 1 3 | lspssid | |
27 | 14 22 26 | syl2anc | |
28 | 27 | unssbd | |
29 | ssun1 | |
|
30 | 29 | a1i | |
31 | 1 3 | lspss | |
32 | 14 22 30 31 | syl3anc | |
33 | 0ss | |
|
34 | 33 | a1i | |
35 | uncom | |
|
36 | un0 | |
|
37 | 35 36 | eqtri | |
38 | 37 | fveq2i | |
39 | 12 38 | eleqtrrdi | |
40 | 10 | eldifbd | |
41 | 9 3 | lsp0 | |
42 | 14 41 | syl | |
43 | 40 42 | neleqtrrd | |
44 | 39 43 | eldifd | |
45 | 1 2 3 | lspsolv | |
46 | 4 34 7 44 45 | syl13anc | |
47 | uncom | |
|
48 | un0 | |
|
49 | 47 48 | eqtri | |
50 | 49 | fveq2i | |
51 | 46 50 | eleqtrdi | |
52 | 32 51 | sseldd | |
53 | 52 | snssd | |
54 | 28 53 | unssd | |
55 | 25 54 | eqsstrid | |
56 | 2 3 | lspssp | |
57 | 14 24 55 56 | syl3anc | |
58 | 20 57 | sstrd | |
59 | 58 | ssdifd | |
60 | 59 11 | sseldd | |
61 | 1 2 3 | lspsolv | |
62 | 4 19 6 60 61 | syl13anc | |
63 | df-pr | |
|
64 | 63 | fveq2i | |
65 | 62 64 | eleqtrrdi | |
66 | 1 2 | lssss | |
67 | 5 66 | syl | |
68 | 67 | ssdifssd | |
69 | 68 11 | sseldd | |
70 | 18 69 | prssd | |
71 | snsspr1 | |
|
72 | 71 | a1i | |
73 | 1 3 | lspss | |
74 | 14 70 72 73 | syl3anc | |
75 | 74 51 | sseldd | |
76 | 65 75 | jca | |