Metamath Proof Explorer


Theorem lsppratlem3

Description: Lemma for lspprat . In the first case of lsppratlem1 , since x e/ ( N(/) ) , also Y e. ( N{ x } ) , and since y e. ( N{ X , Y } ) C_ ( N{ X , x } ) and y e/ ( N{ x } ) , we have X e. ( N{ x , y } ) as desired. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lspprat.v V=BaseW
lspprat.s S=LSubSpW
lspprat.n N=LSpanW
lspprat.w φWLVec
lspprat.u φUS
lspprat.x φXV
lspprat.y φYV
lspprat.p φUNXY
lsppratlem1.o 0˙=0W
lsppratlem1.x2 φxU0˙
lsppratlem1.y2 φyUNx
lsppratlem3.x3 φxNY
Assertion lsppratlem3 φXNxyYNxy

Proof

Step Hyp Ref Expression
1 lspprat.v V=BaseW
2 lspprat.s S=LSubSpW
3 lspprat.n N=LSpanW
4 lspprat.w φWLVec
5 lspprat.u φUS
6 lspprat.x φXV
7 lspprat.y φYV
8 lspprat.p φUNXY
9 lsppratlem1.o 0˙=0W
10 lsppratlem1.x2 φxU0˙
11 lsppratlem1.y2 φyUNx
12 lsppratlem3.x3 φxNY
13 lveclmod WLVecWLMod
14 4 13 syl φWLMod
15 7 snssd φYV
16 1 3 lspssv WLModYVNYV
17 14 15 16 syl2anc φNYV
18 17 12 sseldd φxV
19 18 snssd φxV
20 8 pssssd φUNXY
21 6 snssd φXV
22 19 21 unssd φxXV
23 1 2 3 lspcl WLModxXVNxXS
24 14 22 23 syl2anc φNxXS
25 df-pr XY=XY
26 1 3 lspssid WLModxXVxXNxX
27 14 22 26 syl2anc φxXNxX
28 27 unssbd φXNxX
29 ssun1 xxX
30 29 a1i φxxX
31 1 3 lspss WLModxXVxxXNxNxX
32 14 22 30 31 syl3anc φNxNxX
33 0ss V
34 33 a1i φV
35 uncom Y=Y
36 un0 Y=Y
37 35 36 eqtri Y=Y
38 37 fveq2i NY=NY
39 12 38 eleqtrrdi φxNY
40 10 eldifbd φ¬x0˙
41 9 3 lsp0 WLModN=0˙
42 14 41 syl φN=0˙
43 40 42 neleqtrrd φ¬xN
44 39 43 eldifd φxNYN
45 1 2 3 lspsolv WLVecVYVxNYNYNx
46 4 34 7 44 45 syl13anc φYNx
47 uncom x=x
48 un0 x=x
49 47 48 eqtri x=x
50 49 fveq2i Nx=Nx
51 46 50 eleqtrdi φYNx
52 32 51 sseldd φYNxX
53 52 snssd φYNxX
54 28 53 unssd φXYNxX
55 25 54 eqsstrid φXYNxX
56 2 3 lspssp WLModNxXSXYNxXNXYNxX
57 14 24 55 56 syl3anc φNXYNxX
58 20 57 sstrd φUNxX
59 58 ssdifd φUNxNxXNx
60 59 11 sseldd φyNxXNx
61 1 2 3 lspsolv WLVecxVXVyNxXNxXNxy
62 4 19 6 60 61 syl13anc φXNxy
63 df-pr xy=xy
64 63 fveq2i Nxy=Nxy
65 62 64 eleqtrrdi φXNxy
66 1 2 lssss USUV
67 5 66 syl φUV
68 67 ssdifssd φUNxV
69 68 11 sseldd φyV
70 18 69 prssd φxyV
71 snsspr1 xxy
72 71 a1i φxxy
73 1 3 lspss WLModxyVxxyNxNxy
74 14 70 72 73 syl3anc φNxNxy
75 74 51 sseldd φYNxy
76 65 75 jca φXNxyYNxy