Metamath Proof Explorer


Theorem lssvs0or

Description: If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015)

Ref Expression
Hypotheses lssvs0or.v V=BaseW
lssvs0or.t ·˙=W
lssvs0or.f F=ScalarW
lssvs0or.k K=BaseF
lssvs0or.o 0˙=0F
lssvs0or.s S=LSubSpW
lssvs0or.w φWLVec
lssvs0or.u φUS
lssvs0or.x φXV
lssvs0or.a φAK
Assertion lssvs0or φA·˙XUA=0˙XU

Proof

Step Hyp Ref Expression
1 lssvs0or.v V=BaseW
2 lssvs0or.t ·˙=W
3 lssvs0or.f F=ScalarW
4 lssvs0or.k K=BaseF
5 lssvs0or.o 0˙=0F
6 lssvs0or.s S=LSubSpW
7 lssvs0or.w φWLVec
8 lssvs0or.u φUS
9 lssvs0or.x φXV
10 lssvs0or.a φAK
11 3 lvecdrng WLVecFDivRing
12 7 11 syl φFDivRing
13 12 ad2antrr φA·˙XUA0˙FDivRing
14 10 ad2antrr φA·˙XUA0˙AK
15 simpr φA·˙XUA0˙A0˙
16 eqid F=F
17 eqid 1F=1F
18 eqid invrF=invrF
19 4 5 16 17 18 drnginvrl FDivRingAKA0˙invrFAFA=1F
20 13 14 15 19 syl3anc φA·˙XUA0˙invrFAFA=1F
21 20 oveq1d φA·˙XUA0˙invrFAFA·˙X=1F·˙X
22 lveclmod WLVecWLMod
23 7 22 syl φWLMod
24 23 ad2antrr φA·˙XUA0˙WLMod
25 4 5 18 drnginvrcl FDivRingAKA0˙invrFAK
26 13 14 15 25 syl3anc φA·˙XUA0˙invrFAK
27 9 ad2antrr φA·˙XUA0˙XV
28 1 3 2 4 16 lmodvsass WLModinvrFAKAKXVinvrFAFA·˙X=invrFA·˙A·˙X
29 24 26 14 27 28 syl13anc φA·˙XUA0˙invrFAFA·˙X=invrFA·˙A·˙X
30 1 3 2 17 lmodvs1 WLModXV1F·˙X=X
31 24 27 30 syl2anc φA·˙XUA0˙1F·˙X=X
32 21 29 31 3eqtr3rd φA·˙XUA0˙X=invrFA·˙A·˙X
33 8 ad2antrr φA·˙XUA0˙US
34 simplr φA·˙XUA0˙A·˙XU
35 3 2 4 6 lssvscl WLModUSinvrFAKA·˙XUinvrFA·˙A·˙XU
36 24 33 26 34 35 syl22anc φA·˙XUA0˙invrFA·˙A·˙XU
37 32 36 eqeltrd φA·˙XUA0˙XU
38 37 ex φA·˙XUA0˙XU
39 38 necon1bd φA·˙XU¬XUA=0˙
40 39 orrd φA·˙XUXUA=0˙
41 40 orcomd φA·˙XUA=0˙XU
42 oveq1 A=0˙A·˙X=0˙·˙X
43 42 adantl φA=0˙A·˙X=0˙·˙X
44 eqid 0W=0W
45 1 3 2 5 44 lmod0vs WLModXV0˙·˙X=0W
46 23 9 45 syl2anc φ0˙·˙X=0W
47 44 6 lss0cl WLModUS0WU
48 23 8 47 syl2anc φ0WU
49 46 48 eqeltrd φ0˙·˙XU
50 49 adantr φA=0˙0˙·˙XU
51 43 50 eqeltrd φA=0˙A·˙XU
52 23 adantr φXUWLMod
53 8 adantr φXUUS
54 10 adantr φXUAK
55 simpr φXUXU
56 3 2 4 6 lssvscl WLModUSAKXUA·˙XU
57 52 53 54 55 56 syl22anc φXUA·˙XU
58 51 57 jaodan φA=0˙XUA·˙XU
59 41 58 impbida φA·˙XUA=0˙XU