| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssvs0or.v |  | 
						
							| 2 |  | lssvs0or.t |  | 
						
							| 3 |  | lssvs0or.f |  | 
						
							| 4 |  | lssvs0or.k |  | 
						
							| 5 |  | lssvs0or.o |  | 
						
							| 6 |  | lssvs0or.s |  | 
						
							| 7 |  | lssvs0or.w |  | 
						
							| 8 |  | lssvs0or.u |  | 
						
							| 9 |  | lssvs0or.x |  | 
						
							| 10 |  | lssvs0or.a |  | 
						
							| 11 | 3 | lvecdrng |  | 
						
							| 12 | 7 11 | syl |  | 
						
							| 13 | 12 | ad2antrr |  | 
						
							| 14 | 10 | ad2antrr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 4 5 16 17 18 | drnginvrl |  | 
						
							| 20 | 13 14 15 19 | syl3anc |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 |  | lveclmod |  | 
						
							| 23 | 7 22 | syl |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 | 4 5 18 | drnginvrcl |  | 
						
							| 26 | 13 14 15 25 | syl3anc |  | 
						
							| 27 | 9 | ad2antrr |  | 
						
							| 28 | 1 3 2 4 16 | lmodvsass |  | 
						
							| 29 | 24 26 14 27 28 | syl13anc |  | 
						
							| 30 | 1 3 2 17 | lmodvs1 |  | 
						
							| 31 | 24 27 30 | syl2anc |  | 
						
							| 32 | 21 29 31 | 3eqtr3rd |  | 
						
							| 33 | 8 | ad2antrr |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 | 3 2 4 6 | lssvscl |  | 
						
							| 36 | 24 33 26 34 35 | syl22anc |  | 
						
							| 37 | 32 36 | eqeltrd |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 38 | necon1bd |  | 
						
							| 40 | 39 | orrd |  | 
						
							| 41 | 40 | orcomd |  | 
						
							| 42 |  | oveq1 |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 1 3 2 5 44 | lmod0vs |  | 
						
							| 46 | 23 9 45 | syl2anc |  | 
						
							| 47 | 44 6 | lss0cl |  | 
						
							| 48 | 23 8 47 | syl2anc |  | 
						
							| 49 | 46 48 | eqeltrd |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 43 50 | eqeltrd |  | 
						
							| 52 | 23 | adantr |  | 
						
							| 53 | 8 | adantr |  | 
						
							| 54 | 10 | adantr |  | 
						
							| 55 |  | simpr |  | 
						
							| 56 | 3 2 4 6 | lssvscl |  | 
						
							| 57 | 52 53 54 55 56 | syl22anc |  | 
						
							| 58 | 51 57 | jaodan |  | 
						
							| 59 | 41 58 | impbida |  |