Description: If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssvs0or.v | |
|
lssvs0or.t | |
||
lssvs0or.f | |
||
lssvs0or.k | |
||
lssvs0or.o | |
||
lssvs0or.s | |
||
lssvs0or.w | |
||
lssvs0or.u | |
||
lssvs0or.x | |
||
lssvs0or.a | |
||
Assertion | lssvs0or | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvs0or.v | |
|
2 | lssvs0or.t | |
|
3 | lssvs0or.f | |
|
4 | lssvs0or.k | |
|
5 | lssvs0or.o | |
|
6 | lssvs0or.s | |
|
7 | lssvs0or.w | |
|
8 | lssvs0or.u | |
|
9 | lssvs0or.x | |
|
10 | lssvs0or.a | |
|
11 | 3 | lvecdrng | |
12 | 7 11 | syl | |
13 | 12 | ad2antrr | |
14 | 10 | ad2antrr | |
15 | simpr | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | 4 5 16 17 18 | drnginvrl | |
20 | 13 14 15 19 | syl3anc | |
21 | 20 | oveq1d | |
22 | lveclmod | |
|
23 | 7 22 | syl | |
24 | 23 | ad2antrr | |
25 | 4 5 18 | drnginvrcl | |
26 | 13 14 15 25 | syl3anc | |
27 | 9 | ad2antrr | |
28 | 1 3 2 4 16 | lmodvsass | |
29 | 24 26 14 27 28 | syl13anc | |
30 | 1 3 2 17 | lmodvs1 | |
31 | 24 27 30 | syl2anc | |
32 | 21 29 31 | 3eqtr3rd | |
33 | 8 | ad2antrr | |
34 | simplr | |
|
35 | 3 2 4 6 | lssvscl | |
36 | 24 33 26 34 35 | syl22anc | |
37 | 32 36 | eqeltrd | |
38 | 37 | ex | |
39 | 38 | necon1bd | |
40 | 39 | orrd | |
41 | 40 | orcomd | |
42 | oveq1 | |
|
43 | 42 | adantl | |
44 | eqid | |
|
45 | 1 3 2 5 44 | lmod0vs | |
46 | 23 9 45 | syl2anc | |
47 | 44 6 | lss0cl | |
48 | 23 8 47 | syl2anc | |
49 | 46 48 | eqeltrd | |
50 | 49 | adantr | |
51 | 43 50 | eqeltrd | |
52 | 23 | adantr | |
53 | 8 | adantr | |
54 | 10 | adantr | |
55 | simpr | |
|
56 | 3 2 4 6 | lssvscl | |
57 | 52 53 54 55 56 | syl22anc | |
58 | 51 57 | jaodan | |
59 | 41 58 | impbida | |