Metamath Proof Explorer


Theorem ltanq

Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of Gleason p. 120. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltanq C𝑸A<𝑸BC+𝑸A<𝑸C+𝑸B

Proof

Step Hyp Ref Expression
1 addnqf +𝑸:𝑸×𝑸𝑸
2 1 fdmi dom+𝑸=𝑸×𝑸
3 ltrelnq <𝑸𝑸×𝑸
4 0nnq ¬𝑸
5 ordpinq A𝑸B𝑸A<𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA
6 5 3adant3 A𝑸B𝑸C𝑸A<𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA
7 elpqn C𝑸C𝑵×𝑵
8 7 3ad2ant3 A𝑸B𝑸C𝑸C𝑵×𝑵
9 elpqn A𝑸A𝑵×𝑵
10 9 3ad2ant1 A𝑸B𝑸C𝑸A𝑵×𝑵
11 addpipq2 C𝑵×𝑵A𝑵×𝑵C+𝑝𝑸A=1stC𝑵2ndA+𝑵1stA𝑵2ndC2ndC𝑵2ndA
12 8 10 11 syl2anc A𝑸B𝑸C𝑸C+𝑝𝑸A=1stC𝑵2ndA+𝑵1stA𝑵2ndC2ndC𝑵2ndA
13 elpqn B𝑸B𝑵×𝑵
14 13 3ad2ant2 A𝑸B𝑸C𝑸B𝑵×𝑵
15 addpipq2 C𝑵×𝑵B𝑵×𝑵C+𝑝𝑸B=1stC𝑵2ndB+𝑵1stB𝑵2ndC2ndC𝑵2ndB
16 8 14 15 syl2anc A𝑸B𝑸C𝑸C+𝑝𝑸B=1stC𝑵2ndB+𝑵1stB𝑵2ndC2ndC𝑵2ndB
17 12 16 breq12d A𝑸B𝑸C𝑸C+𝑝𝑸A<𝑝𝑸C+𝑝𝑸B1stC𝑵2ndA+𝑵1stA𝑵2ndC2ndC𝑵2ndA<𝑝𝑸1stC𝑵2ndB+𝑵1stB𝑵2ndC2ndC𝑵2ndB
18 addpqnq C𝑸A𝑸C+𝑸A=/𝑸C+𝑝𝑸A
19 18 ancoms A𝑸C𝑸C+𝑸A=/𝑸C+𝑝𝑸A
20 19 3adant2 A𝑸B𝑸C𝑸C+𝑸A=/𝑸C+𝑝𝑸A
21 addpqnq C𝑸B𝑸C+𝑸B=/𝑸C+𝑝𝑸B
22 21 ancoms B𝑸C𝑸C+𝑸B=/𝑸C+𝑝𝑸B
23 22 3adant1 A𝑸B𝑸C𝑸C+𝑸B=/𝑸C+𝑝𝑸B
24 20 23 breq12d A𝑸B𝑸C𝑸C+𝑸A<𝑸C+𝑸B/𝑸C+𝑝𝑸A<𝑸/𝑸C+𝑝𝑸B
25 lterpq C+𝑝𝑸A<𝑝𝑸C+𝑝𝑸B/𝑸C+𝑝𝑸A<𝑸/𝑸C+𝑝𝑸B
26 24 25 bitr4di A𝑸B𝑸C𝑸C+𝑸A<𝑸C+𝑸BC+𝑝𝑸A<𝑝𝑸C+𝑝𝑸B
27 xp2nd C𝑵×𝑵2ndC𝑵
28 8 27 syl A𝑸B𝑸C𝑸2ndC𝑵
29 mulclpi 2ndC𝑵2ndC𝑵2ndC𝑵2ndC𝑵
30 28 28 29 syl2anc A𝑸B𝑸C𝑸2ndC𝑵2ndC𝑵
31 ltmpi 2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵1stB𝑵2ndA2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA
32 30 31 syl A𝑸B𝑸C𝑸1stA𝑵2ndB<𝑵1stB𝑵2ndA2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA
33 xp2nd B𝑵×𝑵2ndB𝑵
34 14 33 syl A𝑸B𝑸C𝑸2ndB𝑵
35 mulclpi 2ndC𝑵2ndB𝑵2ndC𝑵2ndB𝑵
36 28 34 35 syl2anc A𝑸B𝑸C𝑸2ndC𝑵2ndB𝑵
37 xp1st C𝑵×𝑵1stC𝑵
38 8 37 syl A𝑸B𝑸C𝑸1stC𝑵
39 xp2nd A𝑵×𝑵2ndA𝑵
40 10 39 syl A𝑸B𝑸C𝑸2ndA𝑵
41 mulclpi 1stC𝑵2ndA𝑵1stC𝑵2ndA𝑵
42 38 40 41 syl2anc A𝑸B𝑸C𝑸1stC𝑵2ndA𝑵
43 mulclpi 2ndC𝑵2ndB𝑵1stC𝑵2ndA𝑵2ndC𝑵2ndB𝑵1stC𝑵2ndA𝑵
44 36 42 43 syl2anc A𝑸B𝑸C𝑸2ndC𝑵2ndB𝑵1stC𝑵2ndA𝑵
45 ltapi 2ndC𝑵2ndB𝑵1stC𝑵2ndA𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA
46 44 45 syl A𝑸B𝑸C𝑸2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA
47 32 46 bitrd A𝑸B𝑸C𝑸1stA𝑵2ndB<𝑵1stB𝑵2ndA2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA
48 mulcompi 2ndC𝑵2ndC𝑵1stA𝑵2ndB=1stA𝑵2ndB𝑵2ndC𝑵2ndC
49 fvex 1stAV
50 fvex 2ndBV
51 fvex 2ndCV
52 mulcompi x𝑵y=y𝑵x
53 mulasspi x𝑵y𝑵z=x𝑵y𝑵z
54 49 50 51 52 53 51 caov411 1stA𝑵2ndB𝑵2ndC𝑵2ndC=2ndC𝑵2ndB𝑵1stA𝑵2ndC
55 48 54 eqtri 2ndC𝑵2ndC𝑵1stA𝑵2ndB=2ndC𝑵2ndB𝑵1stA𝑵2ndC
56 55 oveq2i 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB=2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndB𝑵1stA𝑵2ndC
57 distrpi 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵1stA𝑵2ndC=2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndB𝑵1stA𝑵2ndC
58 mulcompi 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵1stA𝑵2ndC=1stC𝑵2ndA+𝑵1stA𝑵2ndC𝑵2ndC𝑵2ndB
59 56 57 58 3eqtr2i 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB=1stC𝑵2ndA+𝑵1stA𝑵2ndC𝑵2ndC𝑵2ndB
60 mulcompi 2ndC𝑵2ndB𝑵1stC𝑵2ndA=1stC𝑵2ndA𝑵2ndC𝑵2ndB
61 fvex 1stCV
62 fvex 2ndAV
63 61 62 51 52 53 50 caov411 1stC𝑵2ndA𝑵2ndC𝑵2ndB=2ndC𝑵2ndA𝑵1stC𝑵2ndB
64 60 63 eqtri 2ndC𝑵2ndB𝑵1stC𝑵2ndA=2ndC𝑵2ndA𝑵1stC𝑵2ndB
65 mulcompi 2ndC𝑵2ndC𝑵1stB𝑵2ndA=1stB𝑵2ndA𝑵2ndC𝑵2ndC
66 fvex 1stBV
67 66 62 51 52 53 51 caov411 1stB𝑵2ndA𝑵2ndC𝑵2ndC=2ndC𝑵2ndA𝑵1stB𝑵2ndC
68 65 67 eqtri 2ndC𝑵2ndC𝑵1stB𝑵2ndA=2ndC𝑵2ndA𝑵1stB𝑵2ndC
69 64 68 oveq12i 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA=2ndC𝑵2ndA𝑵1stC𝑵2ndB+𝑵2ndC𝑵2ndA𝑵1stB𝑵2ndC
70 distrpi 2ndC𝑵2ndA𝑵1stC𝑵2ndB+𝑵1stB𝑵2ndC=2ndC𝑵2ndA𝑵1stC𝑵2ndB+𝑵2ndC𝑵2ndA𝑵1stB𝑵2ndC
71 mulcompi 2ndC𝑵2ndA𝑵1stC𝑵2ndB+𝑵1stB𝑵2ndC=1stC𝑵2ndB+𝑵1stB𝑵2ndC𝑵2ndC𝑵2ndA
72 69 70 71 3eqtr2i 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA=1stC𝑵2ndB+𝑵1stB𝑵2ndC𝑵2ndC𝑵2ndA
73 59 72 breq12i 2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stA𝑵2ndB<𝑵2ndC𝑵2ndB𝑵1stC𝑵2ndA+𝑵2ndC𝑵2ndC𝑵1stB𝑵2ndA1stC𝑵2ndA+𝑵1stA𝑵2ndC𝑵2ndC𝑵2ndB<𝑵1stC𝑵2ndB+𝑵1stB𝑵2ndC𝑵2ndC𝑵2ndA
74 47 73 bitrdi A𝑸B𝑸C𝑸1stA𝑵2ndB<𝑵1stB𝑵2ndA1stC𝑵2ndA+𝑵1stA𝑵2ndC𝑵2ndC𝑵2ndB<𝑵1stC𝑵2ndB+𝑵1stB𝑵2ndC𝑵2ndC𝑵2ndA
75 ordpipq 1stC𝑵2ndA+𝑵1stA𝑵2ndC2ndC𝑵2ndA<𝑝𝑸1stC𝑵2ndB+𝑵1stB𝑵2ndC2ndC𝑵2ndB1stC𝑵2ndA+𝑵1stA𝑵2ndC𝑵2ndC𝑵2ndB<𝑵1stC𝑵2ndB+𝑵1stB𝑵2ndC𝑵2ndC𝑵2ndA
76 74 75 bitr4di A𝑸B𝑸C𝑸1stA𝑵2ndB<𝑵1stB𝑵2ndA1stC𝑵2ndA+𝑵1stA𝑵2ndC2ndC𝑵2ndA<𝑝𝑸1stC𝑵2ndB+𝑵1stB𝑵2ndC2ndC𝑵2ndB
77 17 26 76 3bitr4rd A𝑸B𝑸C𝑸1stA𝑵2ndB<𝑵1stB𝑵2ndAC+𝑸A<𝑸C+𝑸B
78 6 77 bitrd A𝑸B𝑸C𝑸A<𝑸BC+𝑸A<𝑸C+𝑸B
79 2 3 4 78 ndmovord C𝑸A<𝑸BC+𝑸A<𝑸C+𝑸B