Metamath Proof Explorer


Theorem lzenom

Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion lzenom NN+1ω

Proof

Step Hyp Ref Expression
1 zex V
2 difexg VN+1V
3 1 2 mp1i NN+1V
4 nnex V
5 4 a1i NV
6 ovex N+1-aV
7 6 2a1i NaN+1N+1-aV
8 ovex N+1-bV
9 8 2a1i NbN+1-bV
10 simpl NaaNN
11 10 peano2zd NaaNN+1
12 simprl NaaNa
13 11 12 zsubcld NaaNN+1-a
14 zre aa
15 14 ad2antrl NaaNa
16 11 zred NaaNN+1
17 1red NaaN1
18 simprr NaaNaN
19 zcn NN
20 19 adantr NaaNN
21 ax-1cn 1
22 pncan N1N+1-1=N
23 20 21 22 sylancl NaaNN+1-1=N
24 18 23 breqtrrd NaaNaN+1-1
25 15 16 17 24 lesubd NaaN1N+1-a
26 11 zcnd NaaNN+1
27 zcn aa
28 27 ad2antrl NaaNa
29 26 28 nncand NaaNN+1-N+1-a=a
30 29 eqcomd NaaNa=N+1-N+1-a
31 13 25 30 jca31 NaaNN+1-a1N+1-aa=N+1-N+1-a
32 31 adantrr NaaNb=N+1-aN+1-a1N+1-aa=N+1-N+1-a
33 eleq1 b=N+1-abN+1-a
34 breq2 b=N+1-a1b1N+1-a
35 33 34 anbi12d b=N+1-ab1bN+1-a1N+1-a
36 oveq2 b=N+1-aN+1-b=N+1-N+1-a
37 36 eqeq2d b=N+1-aa=N+1-ba=N+1-N+1-a
38 35 37 anbi12d b=N+1-ab1ba=N+1-bN+1-a1N+1-aa=N+1-N+1-a
39 38 ad2antll NaaNb=N+1-ab1ba=N+1-bN+1-a1N+1-aa=N+1-N+1-a
40 32 39 mpbird NaaNb=N+1-ab1ba=N+1-b
41 simpl Nb1bN
42 41 peano2zd Nb1bN+1
43 simprl Nb1bb
44 42 43 zsubcld Nb1bN+1-b
45 42 zred Nb1bN+1
46 zre NN
47 46 adantr Nb1bN
48 zre bb
49 48 ad2antrl Nb1bb
50 47 recnd Nb1bN
51 pncan2 N1N+1-N=1
52 50 21 51 sylancl Nb1bN+1-N=1
53 simprr Nb1b1b
54 52 53 eqbrtrd Nb1bN+1-Nb
55 45 47 49 54 subled Nb1bN+1-bN
56 42 zcnd Nb1bN+1
57 zcn bb
58 57 ad2antrl Nb1bb
59 56 58 nncand Nb1bN+1-N+1-b=b
60 59 eqcomd Nb1bb=N+1-N+1-b
61 44 55 60 jca31 Nb1bN+1-bN+1-bNb=N+1-N+1-b
62 61 adantrr Nb1ba=N+1-bN+1-bN+1-bNb=N+1-N+1-b
63 eleq1 a=N+1-baN+1-b
64 breq1 a=N+1-baNN+1-bN
65 63 64 anbi12d a=N+1-baaNN+1-bN+1-bN
66 oveq2 a=N+1-bN+1-a=N+1-N+1-b
67 66 eqeq2d a=N+1-bb=N+1-ab=N+1-N+1-b
68 65 67 anbi12d a=N+1-baaNb=N+1-aN+1-bN+1-bNb=N+1-N+1-b
69 68 ad2antll Nb1ba=N+1-baaNb=N+1-aN+1-bN+1-bNb=N+1-N+1-b
70 62 69 mpbird Nb1ba=N+1-baaNb=N+1-a
71 40 70 impbida NaaNb=N+1-ab1ba=N+1-b
72 ellz1 NaN+1aaN
73 72 anbi1d NaN+1b=N+1-aaaNb=N+1-a
74 elnnz1 bb1b
75 74 a1i Nbb1b
76 75 anbi1d Nba=N+1-bb1ba=N+1-b
77 71 73 76 3bitr4d NaN+1b=N+1-aba=N+1-b
78 3 5 7 9 77 en2d NN+1
79 nnenom ω
80 entr N+1ωN+1ω
81 78 79 80 sylancl NN+1ω