Metamath Proof Explorer


Theorem mapdh8ab

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8ab.f φFD
mapdh8ab.mn φMNX=JF
mapdh8ab.eg φIXFY=G
mapdh8ab.ee φIXFZ=E
mapdh8ab.x φXV0˙
mapdh8ab.y φYV0˙
mapdh8ab.z φZV0˙
mapdh8ab.t φTV0˙
mapdh8ab.yz φNYNZ
mapdh8ab.xn φ¬XNYZ
mapdh8ab.yn φNX=NT
Assertion mapdh8ab φIYGT=IZET

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8ab.f φFD
16 mapdh8ab.mn φMNX=JF
17 mapdh8ab.eg φIXFY=G
18 mapdh8ab.ee φIXFZ=E
19 mapdh8ab.x φXV0˙
20 mapdh8ab.y φYV0˙
21 mapdh8ab.z φZV0˙
22 mapdh8ab.t φTV0˙
23 mapdh8ab.yz φNYNZ
24 mapdh8ab.xn φ¬XNYZ
25 mapdh8ab.yn φNX=NT
26 1 2 14 dvhlvec φULVec
27 19 eldifad φXV
28 20 eldifad φYV
29 21 eldifad φZV
30 3 6 26 27 28 29 24 lspindpi φNXNYNXNZ
31 30 simprd φNXNZ
32 31 necomd φNZNX
33 32 25 neeqtrd φNZNT
34 25 sseq1d φNXNYZNTNYZ
35 eqid LSubSpU=LSubSpU
36 1 2 14 dvhlmod φULMod
37 3 35 6 36 28 29 lspprcl φNYZLSubSpU
38 3 35 6 36 37 27 lspsnel5 φXNYZNXNYZ
39 22 eldifad φTV
40 3 35 6 36 37 39 lspsnel5 φTNYZNTNYZ
41 34 38 40 3bitr4d φXNYZTNYZ
42 24 41 mtbid φ¬TNYZ
43 26 adantr φYNZTULVec
44 20 adantr φYNZTYV0˙
45 39 adantr φYNZTTV
46 29 adantr φYNZTZV
47 23 adantr φYNZTNYNZ
48 simpr φYNZTYNZT
49 prcom ZT=TZ
50 49 fveq2i NZT=NTZ
51 48 50 eleqtrdi φYNZTYNTZ
52 3 5 6 43 44 45 46 47 51 lspexch φYNZTTNYZ
53 42 52 mtand φ¬YNZT
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 22 53 24 mapdh8aa φIYGT=IZET