Metamath Proof Explorer


Theorem mapdh8e

Description: Part of Part (8) in Baer p. 48. Eliminate w . (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8e.f φFD
mapdh8e.mn φMNX=JF
mapdh8e.eg φIXFY=G
mapdh8e.x φXV0˙
mapdh8e.y φYV0˙
mapdh8e.t φTV0˙
mapdh8e.xy φNXNY
mapdh8e.xt φNXNT
mapdh8e.yt φNYNT
mapdh8e.e φXNYT
Assertion mapdh8e φIYGT=IXFT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8e.f φFD
16 mapdh8e.mn φMNX=JF
17 mapdh8e.eg φIXFY=G
18 mapdh8e.x φXV0˙
19 mapdh8e.y φYV0˙
20 mapdh8e.t φTV0˙
21 mapdh8e.xy φNXNY
22 mapdh8e.xt φNXNT
23 mapdh8e.yt φNYNT
24 mapdh8e.e φXNYT
25 18 eldifad φXV
26 19 eldifad φYV
27 1 2 3 6 14 25 26 dvh3dim φwV¬wNXY
28 14 3ad2ant1 φwV¬wNXYKHLWH
29 15 3ad2ant1 φwV¬wNXYFD
30 16 3ad2ant1 φwV¬wNXYMNX=JF
31 17 3ad2ant1 φwV¬wNXYIXFY=G
32 18 3ad2ant1 φwV¬wNXYXV0˙
33 19 3ad2ant1 φwV¬wNXYYV0˙
34 20 3ad2ant1 φwV¬wNXYTV0˙
35 23 3ad2ant1 φwV¬wNXYNYNT
36 eqid LSubSpU=LSubSpU
37 1 2 14 dvhlmod φULMod
38 37 3ad2ant1 φwV¬wNXYULMod
39 3 36 6 37 25 26 lspprcl φNXYLSubSpU
40 39 3ad2ant1 φwV¬wNXYNXYLSubSpU
41 simp2 φwV¬wNXYwV
42 simp3 φwV¬wNXY¬wNXY
43 5 36 38 40 41 42 lssneln0 φwV¬wNXYwV0˙
44 1 2 14 dvhlvec φULVec
45 20 eldifad φTV
46 prcom YT=TY
47 46 fveq2i NYT=NTY
48 24 47 eleqtrdi φXNTY
49 3 5 6 44 18 45 26 21 48 lspexch φTNXY
50 36 6 37 39 49 lspsnel5a φNTNXY
51 50 3ad2ant1 φwV¬wNXYNTNXY
52 37 adantr φwVULMod
53 39 adantr φwVNXYLSubSpU
54 simpr φwVwV
55 3 36 6 52 53 54 lspsnel5 φwVwNXYNwNXY
56 55 biimprd φwVNwNXYwNXY
57 56 con3d φwV¬wNXY¬NwNXY
58 57 3impia φwV¬wNXY¬NwNXY
59 nssne2 NTNXY¬NwNXYNTNw
60 51 58 59 syl2anc φwV¬wNXYNTNw
61 60 necomd φwV¬wNXYNwNT
62 22 3ad2ant1 φwV¬wNXYNXNT
63 44 3ad2ant1 φwV¬wNXYULVec
64 25 3ad2ant1 φwV¬wNXYXV
65 26 3ad2ant1 φwV¬wNXYYV
66 3 6 63 41 64 65 42 lspindpi φwV¬wNXYNwNXNwNY
67 66 simprd φwV¬wNXYNwNY
68 67 necomd φwV¬wNXYNYNw
69 21 3ad2ant1 φwV¬wNXYNXNY
70 3 5 6 63 32 65 41 69 42 lspindp2l φwV¬wNXYNYNw¬XNYw
71 70 simprd φwV¬wNXY¬XNYw
72 1 2 3 4 5 6 7 8 9 10 11 12 13 28 29 30 31 32 33 34 35 43 61 62 68 71 mapdh8d φwV¬wNXYIYGT=IXFT
73 72 rexlimdv3a φwV¬wNXYIYGT=IXFT
74 27 73 mpd φIYGT=IXFT