Metamath Proof Explorer


Theorem mapdpglem18

Description: Lemma for mapdpg . Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem17.ep E=invrAg·˙z
Assertion mapdpglem18 φE0C

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem17.ep E=invrAg·˙z
31 1 3 8 dvhlvec φULVec
32 15 lvecdrng ULVecADivRing
33 31 32 syl φADivRing
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mapdpglem11 φg0˙
35 eqid invrA=invrA
36 16 24 35 drnginvrn0 ADivRinggBg0˙invrAg0˙
37 33 25 34 36 syl3anc φinvrAg0˙
38 eqid ScalarC=ScalarC
39 eqid 0ScalarC=0ScalarC
40 1 3 15 24 7 38 39 8 lcd0 φ0ScalarC=0˙
41 37 40 neeqtrrd φinvrAg0ScalarC
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 mapdpglem16 φz0C
43 eqid BaseScalarC=BaseScalarC
44 eqid 0C=0C
45 1 7 8 lcdlvec φCLVec
46 16 24 35 drnginvrcl ADivRinggBg0˙invrAgB
47 33 25 34 46 syl3anc φinvrAgB
48 1 3 15 16 7 38 43 8 lcdsbase φBaseScalarC=B
49 47 48 eleqtrrd φinvrAgBaseScalarC
50 eqid LSubSpU=LSubSpU
51 eqid LSubSpC=LSubSpC
52 1 3 8 dvhlmod φULMod
53 4 50 6 lspsncl ULModYVNYLSubSpU
54 52 10 53 syl2anc φNYLSubSpU
55 1 2 3 50 7 51 8 54 mapdcl2 φMNYLSubSpC
56 13 51 lssss MNYLSubSpCMNYF
57 55 56 syl φMNYF
58 57 26 sseldd φzF
59 13 17 38 43 39 44 45 49 58 lvecvsn0 φinvrAg·˙z0CinvrAg0ScalarCz0C
60 41 42 59 mpbir2and φinvrAg·˙z0C
61 60 30 44 3netr4g φE0C