Description: Lemma 2 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapfien.s | |
|
mapfien.t | |
||
mapfien.w | |
||
mapfien.f | |
||
mapfien.g | |
||
mapfien.a | |
||
mapfien.b | |
||
mapfien.c | |
||
mapfien.d | |
||
mapfien.z | |
||
Assertion | mapfienlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfien.s | |
|
2 | mapfien.t | |
|
3 | mapfien.w | |
|
4 | mapfien.f | |
|
5 | mapfien.g | |
|
6 | mapfien.a | |
|
7 | mapfien.b | |
|
8 | mapfien.c | |
|
9 | mapfien.d | |
|
10 | mapfien.z | |
|
11 | 10 | adantr | |
12 | f1of | |
|
13 | 5 12 | syl | |
14 | 13 10 | ffvelcdmd | |
15 | 3 14 | eqeltrid | |
16 | 15 | adantr | |
17 | elrabi | |
|
18 | elmapi | |
|
19 | 17 18 | syl | |
20 | 19 2 | eleq2s | |
21 | 20 | adantl | |
22 | f1ocnv | |
|
23 | f1of | |
|
24 | 5 22 23 | 3syl | |
25 | 24 | adantr | |
26 | ssidd | |
|
27 | 8 | adantr | |
28 | 9 | adantr | |
29 | breq1 | |
|
30 | 29 | elrab | |
31 | 30 | simprbi | |
32 | 31 2 | eleq2s | |
33 | 32 | adantl | |
34 | 5 10 | jca | |
35 | 3 | eqcomi | |
36 | 34 35 | jctir | |
37 | 36 | adantr | |
38 | f1ocnvfv | |
|
39 | 38 | imp | |
40 | 37 39 | syl | |
41 | 11 16 21 25 26 27 28 33 40 | fsuppcor | |
42 | f1ocnv | |
|
43 | f1of1 | |
|
44 | 4 42 43 | 3syl | |
45 | 44 | adantr | |
46 | 13 7 | jca | |
47 | fex | |
|
48 | cnvexg | |
|
49 | 46 47 48 | 3syl | |
50 | coexg | |
|
51 | 49 50 | sylan | |
52 | 41 45 11 51 | fsuppco | |