Metamath Proof Explorer


Theorem mat1dimelbas

Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A=EMatR
mat1dim.b B=BaseR
mat1dim.o O=EE
Assertion mat1dimelbas RRingEVMBaseArBM=Or

Proof

Step Hyp Ref Expression
1 mat1dim.a A=EMatR
2 mat1dim.b B=BaseR
3 mat1dim.o O=EE
4 snfi EFin
5 simpl RRingEVRRing
6 1 2 matbas2 EFinRRingBE×E=BaseA
7 6 eqcomd EFinRRingBaseA=BE×E
8 7 eleq2d EFinRRingMBaseAMBE×E
9 4 5 8 sylancr RRingEVMBaseAMBE×E
10 2 fvexi BV
11 snex EV
12 11 11 pm3.2i EVEV
13 xpexg EVEVE×EV
14 12 13 mp1i RRingEVE×EV
15 elmapg BVE×EVMBE×EM:E×EB
16 10 14 15 sylancr RRingEVMBE×EM:E×EB
17 9 16 bitrd RRingEVMBaseAM:E×EB
18 xpsng EVEVE×E=EE
19 18 anidms EVE×E=EE
20 19 adantl RRingEVE×E=EE
21 20 feq2d RRingEVM:E×EBM:EEB
22 opex EEV
23 22 fsn2 M:EEBMEEBM=EEMEE
24 risset MEEBrBr=MEE
25 eqcom r=MEEMEE=r
26 25 rexbii rBr=MEErBMEE=r
27 24 26 sylbb MEEBrBMEE=r
28 27 ad2antrl RRingEVMEEBM=EEMEErBMEE=r
29 eqeq1 M=EEMEEM=EErEEMEE=EEr
30 opex EEMEEV
31 sneqbg EEMEEVEEMEE=EErEEMEE=EEr
32 30 31 ax-mp EEMEE=EErEEMEE=EEr
33 eqid EE=EE
34 vex rV
35 22 34 opth2 EEMEE=EErEE=EEMEE=r
36 33 35 mpbiran EEMEE=EErMEE=r
37 32 36 bitri EEMEE=EErMEE=r
38 29 37 bitrdi M=EEMEEM=EErMEE=r
39 38 adantl MEEBM=EEMEEM=EErMEE=r
40 39 adantl RRingEVMEEBM=EEMEEM=EErMEE=r
41 40 rexbidv RRingEVMEEBM=EEMEErBM=EErrBMEE=r
42 28 41 mpbird RRingEVMEEBM=EEMEErBM=EEr
43 42 ex RRingEVMEEBM=EEMEErBM=EEr
44 23 43 biimtrid RRingEVM:EEBrBM=EEr
45 21 44 sylbid RRingEVM:E×EBrBM=EEr
46 f1o2sn EVrBEEr:E×E1-1 ontor
47 f1of EEr:E×E1-1 ontorEEr:E×Er
48 46 47 syl EVrBEEr:E×Er
49 48 adantll RRingEVrBEEr:E×Er
50 snssi rBrB
51 50 adantl RRingEVrBrB
52 49 51 fssd RRingEVrBEEr:E×EB
53 feq1 M=EErM:E×EBEEr:E×EB
54 52 53 syl5ibrcom RRingEVrBM=EErM:E×EB
55 54 rexlimdva RRingEVrBM=EErM:E×EB
56 45 55 impbid RRingEVM:E×EBrBM=EEr
57 3 eqcomi EE=O
58 57 opeq1i EEr=Or
59 58 sneqi EEr=Or
60 59 eqeq2i M=EErM=Or
61 60 a1i RRingEVM=EErM=Or
62 61 rexbidv RRingEVrBM=EErrBM=Or
63 56 62 bitrd RRingEVM:E×EBrBM=Or
64 17 63 bitrd RRingEVMBaseArBM=Or