| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsiga |  | 
						
							| 2 |  | elrnsiga |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | brsigarn |  | 
						
							| 5 |  | elrnsiga |  | 
						
							| 6 | 4 5 | mp1i |  | 
						
							| 7 | 3 6 | ismbfm |  | 
						
							| 8 |  | unibrsiga |  | 
						
							| 9 |  | reex |  | 
						
							| 10 | 8 9 | eqeltri |  | 
						
							| 11 |  | unipw |  | 
						
							| 12 |  | elex |  | 
						
							| 13 | 11 12 | eqeltrid |  | 
						
							| 14 |  | elmapg |  | 
						
							| 15 | 10 13 14 | sylancr |  | 
						
							| 16 | 11 | feq2i |  | 
						
							| 17 | 15 16 | bitrdi |  | 
						
							| 18 |  | ffn |  | 
						
							| 19 | 17 18 | biimtrdi |  | 
						
							| 20 |  | elpreima |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 | 20 21 | biimtrdi |  | 
						
							| 23 | 22 | ssrdv |  | 
						
							| 24 |  | vex |  | 
						
							| 25 | 24 | cnvex |  | 
						
							| 26 |  | imaexg |  | 
						
							| 27 | 25 26 | ax-mp |  | 
						
							| 28 | 27 | elpw |  | 
						
							| 29 | 23 28 | sylibr |  | 
						
							| 30 | 29 | ralrimivw |  | 
						
							| 31 | 19 30 | syl6 |  | 
						
							| 32 | 31 | pm4.71d |  | 
						
							| 33 | 7 32 | bitr4d |  | 
						
							| 34 | 33 | eqrdv |  | 
						
							| 35 | 8 11 | oveq12i |  | 
						
							| 36 | 34 35 | eqtrdi |  |