| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d |  | 
						
							| 2 |  | mclsval.e |  | 
						
							| 3 |  | mclsval.c |  | 
						
							| 4 |  | mclsval.1 |  | 
						
							| 5 |  | mclsval.2 |  | 
						
							| 6 |  | mclsval.3 |  | 
						
							| 7 |  | mclsax.a |  | 
						
							| 8 |  | mclsax.l |  | 
						
							| 9 |  | mclsax.v |  | 
						
							| 10 |  | mclsax.h |  | 
						
							| 11 |  | mclsax.w |  | 
						
							| 12 |  | mclsind.4 |  | 
						
							| 13 |  | mclsind.5 |  | 
						
							| 14 |  | mclsind.6 |  | 
						
							| 15 | 1 2 3 4 5 6 10 7 8 11 | mclsval |  | 
						
							| 16 | 6 12 | ssind |  | 
						
							| 17 | 9 2 10 | mvhf |  | 
						
							| 18 | 4 17 | syl |  | 
						
							| 19 | 18 | ffnd |  | 
						
							| 20 | 18 | ffvelcdmda |  | 
						
							| 21 | 20 13 | elind |  | 
						
							| 22 | 21 | ralrimiva |  | 
						
							| 23 |  | ffnfv |  | 
						
							| 24 | 19 22 23 | sylanbrc |  | 
						
							| 25 | 24 | frnd |  | 
						
							| 26 | 16 25 | unssd |  | 
						
							| 27 |  | id |  | 
						
							| 28 |  | inss2 |  | 
						
							| 29 | 27 28 | sstrdi |  | 
						
							| 30 | 4 | adantr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 9 31 8 2 | msubff |  | 
						
							| 33 |  | frn |  | 
						
							| 34 | 30 32 33 | 3syl |  | 
						
							| 35 |  | simpr2 |  | 
						
							| 36 | 34 35 | sseldd |  | 
						
							| 37 |  | elmapi |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 7 39 | maxsta |  | 
						
							| 41 | 30 40 | syl |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 42 39 | mstapst |  | 
						
							| 44 | 41 43 | sstrdi |  | 
						
							| 45 |  | simpr1 |  | 
						
							| 46 | 44 45 | sseldd |  | 
						
							| 47 | 1 2 42 | elmpst |  | 
						
							| 48 | 47 | simp3bi |  | 
						
							| 49 | 46 48 | syl |  | 
						
							| 50 | 38 49 | ffvelcdmd |  | 
						
							| 51 | 50 | 3adant3 |  | 
						
							| 52 | 51 14 | elind |  | 
						
							| 53 | 52 | 3exp |  | 
						
							| 54 | 53 | 3expd |  | 
						
							| 55 | 54 | imp31 |  | 
						
							| 56 | 29 55 | syl5 |  | 
						
							| 57 | 56 | impd |  | 
						
							| 58 | 57 | ralrimiva |  | 
						
							| 59 | 58 | ex |  | 
						
							| 60 | 59 | alrimiv |  | 
						
							| 61 | 60 | alrimivv |  | 
						
							| 62 | 2 | fvexi |  | 
						
							| 63 | 62 | inex1 |  | 
						
							| 64 |  | sseq2 |  | 
						
							| 65 |  | sseq2 |  | 
						
							| 66 | 65 | anbi1d |  | 
						
							| 67 |  | eleq2 |  | 
						
							| 68 | 66 67 | imbi12d |  | 
						
							| 69 | 68 | ralbidv |  | 
						
							| 70 | 69 | imbi2d |  | 
						
							| 71 | 70 | albidv |  | 
						
							| 72 | 71 | 2albidv |  | 
						
							| 73 | 64 72 | anbi12d |  | 
						
							| 74 | 63 73 | elab |  | 
						
							| 75 | 26 61 74 | sylanbrc |  | 
						
							| 76 |  | intss1 |  | 
						
							| 77 | 75 76 | syl |  | 
						
							| 78 | 77 28 | sstrdi |  | 
						
							| 79 | 15 78 | eqsstrd |  |