Metamath Proof Explorer


Theorem mclspps

Description: The closure is closed under application of provable pre-statements. (Compare mclsax .) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclspps.d D = mDV T
mclspps.e E = mEx T
mclspps.c C = mCls T
mclspps.1 φ T mFS
mclspps.2 φ K D
mclspps.3 φ B E
mclspps.j J = mPPSt T
mclspps.l L = mSubst T
mclspps.v V = mVR T
mclspps.h H = mVH T
mclspps.w W = mVars T
mclspps.4 φ M O P J
mclspps.5 φ S ran L
mclspps.6 φ x O S x K C B
mclspps.7 φ v V S H v K C B
mclspps.8 φ x M y a W S H x b W S H y a K b
Assertion mclspps φ S P K C B

Proof

Step Hyp Ref Expression
1 mclspps.d D = mDV T
2 mclspps.e E = mEx T
3 mclspps.c C = mCls T
4 mclspps.1 φ T mFS
5 mclspps.2 φ K D
6 mclspps.3 φ B E
7 mclspps.j J = mPPSt T
8 mclspps.l L = mSubst T
9 mclspps.v V = mVR T
10 mclspps.h H = mVH T
11 mclspps.w W = mVars T
12 mclspps.4 φ M O P J
13 mclspps.5 φ S ran L
14 mclspps.6 φ x O S x K C B
15 mclspps.7 φ v V S H v K C B
16 mclspps.8 φ x M y a W S H x b W S H y a K b
17 8 2 msubf S ran L S : E E
18 13 17 syl φ S : E E
19 18 ffnd φ S Fn E
20 eqid mPreSt T = mPreSt T
21 20 7 mppspst J mPreSt T
22 21 12 sseldi φ M O P mPreSt T
23 1 2 20 elmpst M O P mPreSt T M D M -1 = M O E O Fin P E
24 22 23 sylib φ M D M -1 = M O E O Fin P E
25 24 simp1d φ M D M -1 = M
26 25 simpld φ M D
27 24 simp2d φ O E O Fin
28 27 simpld φ O E
29 eqid mAx T = mAx T
30 14 ralrimiva φ x O S x K C B
31 18 ffund φ Fun S
32 18 fdmd φ dom S = E
33 28 32 sseqtrrd φ O dom S
34 funimass5 Fun S O dom S O S -1 K C B x O S x K C B
35 31 33 34 syl2anc φ O S -1 K C B x O S x K C B
36 30 35 mpbird φ O S -1 K C B
37 9 2 10 mvhf T mFS H : V E
38 4 37 syl φ H : V E
39 38 ffvelrnda φ v V H v E
40 elpreima S Fn E H v S -1 K C B H v E S H v K C B
41 19 40 syl φ H v S -1 K C B H v E S H v K C B
42 41 adantr φ v V H v S -1 K C B H v E S H v K C B
43 39 15 42 mpbir2and φ v V H v S -1 K C B
44 4 3ad2ant1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M T mFS
45 5 3ad2ant1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M K D
46 6 3ad2ant1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M B E
47 12 3ad2ant1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M M O P J
48 13 3ad2ant1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M S ran L
49 14 3ad2antl1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M x O S x K C B
50 15 3ad2antl1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M v V S H v K C B
51 16 3ad2antl1 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M x M y a W S H x b W S H y a K b
52 simp21 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M m o p mAx T
53 simp22 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M s ran L
54 simp23 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M s o ran H S -1 K C B
55 simp3 φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M z w z m w W s H z × W s H w M
56 1 2 3 44 45 46 7 8 9 10 11 47 48 49 50 51 52 53 54 55 mclsppslem φ m o p mAx T s ran L s o ran H S -1 K C B z w z m w W s H z × W s H w M s p S -1 K C B
57 1 2 3 4 26 28 29 8 9 10 11 36 43 56 mclsind φ M C O S -1 K C B
58 20 7 3 elmpps M O P J M O P mPreSt T P M C O
59 58 simprbi M O P J P M C O
60 12 59 syl φ P M C O
61 57 60 sseldd φ P S -1 K C B
62 elpreima S Fn E P S -1 K C B P E S P K C B
63 62 simplbda S Fn E P S -1 K C B S P K C B
64 19 61 63 syl2anc φ S P K C B