Metamath Proof Explorer


Theorem mdetrsca2

Description: The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetrsca2.d D=NmaDetR
mdetrsca2.k K=BaseR
mdetrsca2.t ·˙=R
mdetrsca2.r φRCRing
mdetrsca2.n φNFin
mdetrsca2.x φiNjNXK
mdetrsca2.y φiNjNYK
mdetrsca2.f φFK
mdetrsca2.i φIN
Assertion mdetrsca2 φDiN,jNifi=IF·˙XY=F·˙DiN,jNifi=IXY

Proof

Step Hyp Ref Expression
1 mdetrsca2.d D=NmaDetR
2 mdetrsca2.k K=BaseR
3 mdetrsca2.t ·˙=R
4 mdetrsca2.r φRCRing
5 mdetrsca2.n φNFin
6 mdetrsca2.x φiNjNXK
7 mdetrsca2.y φiNjNYK
8 mdetrsca2.f φFK
9 mdetrsca2.i φIN
10 eqid NMatR=NMatR
11 eqid BaseNMatR=BaseNMatR
12 crngring RCRingRRing
13 4 12 syl φRRing
14 13 3ad2ant1 φiNjNRRing
15 8 3ad2ant1 φiNjNFK
16 2 3 ringcl RRingFKXKF·˙XK
17 14 15 6 16 syl3anc φiNjNF·˙XK
18 17 7 ifcld φiNjNifi=IF·˙XYK
19 10 2 11 5 4 18 matbas2d φiN,jNifi=IF·˙XYBaseNMatR
20 6 7 ifcld φiNjNifi=IXYK
21 10 2 11 5 4 20 matbas2d φiN,jNifi=IXYBaseNMatR
22 snex IV
23 22 a1i φIV
24 8 3ad2ant1 φiIjNFK
25 9 snssd φIN
26 25 sselda φiIiN
27 26 3adant3 φiIjNiN
28 27 6 syld3an2 φiIjNXK
29 fconstmpo I×N×F=iI,jNF
30 29 a1i φI×N×F=iI,jNF
31 eqidd φiI,jNX=iI,jNX
32 23 5 24 28 30 31 offval22 φI×N×F·˙fiI,jNX=iI,jNF·˙X
33 mposnif iI,jNifi=IXY=iI,jNX
34 33 oveq2i I×N×F·˙fiI,jNifi=IXY=I×N×F·˙fiI,jNX
35 mposnif iI,jNifi=IF·˙XY=iI,jNF·˙X
36 32 34 35 3eqtr4g φI×N×F·˙fiI,jNifi=IXY=iI,jNifi=IF·˙XY
37 ssid NN
38 resmpo INNNiN,jNifi=IXYI×N=iI,jNifi=IXY
39 25 37 38 sylancl φiN,jNifi=IXYI×N=iI,jNifi=IXY
40 39 oveq2d φI×N×F·˙fiN,jNifi=IXYI×N=I×N×F·˙fiI,jNifi=IXY
41 resmpo INNNiN,jNifi=IF·˙XYI×N=iI,jNifi=IF·˙XY
42 25 37 41 sylancl φiN,jNifi=IF·˙XYI×N=iI,jNifi=IF·˙XY
43 36 40 42 3eqtr4rd φiN,jNifi=IF·˙XYI×N=I×N×F·˙fiN,jNifi=IXYI×N
44 eldifsni iNIiI
45 44 3ad2ant2 φiNIjNiI
46 45 neneqd φiNIjN¬i=I
47 iffalse ¬i=Iifi=IF·˙XY=Y
48 iffalse ¬i=Iifi=IXY=Y
49 47 48 eqtr4d ¬i=Iifi=IF·˙XY=ifi=IXY
50 46 49 syl φiNIjNifi=IF·˙XY=ifi=IXY
51 50 mpoeq3dva φiNI,jNifi=IF·˙XY=iNI,jNifi=IXY
52 difss NIN
53 resmpo NINNNiN,jNifi=IF·˙XYNI×N=iNI,jNifi=IF·˙XY
54 52 37 53 mp2an iN,jNifi=IF·˙XYNI×N=iNI,jNifi=IF·˙XY
55 resmpo NINNNiN,jNifi=IXYNI×N=iNI,jNifi=IXY
56 52 37 55 mp2an iN,jNifi=IXYNI×N=iNI,jNifi=IXY
57 51 54 56 3eqtr4g φiN,jNifi=IF·˙XYNI×N=iN,jNifi=IXYNI×N
58 1 10 11 2 3 4 19 8 21 9 43 57 mdetrsca φDiN,jNifi=IF·˙XY=F·˙DiN,jNifi=IXY