Metamath Proof Explorer


Theorem mdetunilem5

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A=NMatR
mdetuni.b B=BaseA
mdetuni.k K=BaseR
mdetuni.0g 0˙=0R
mdetuni.1r 1˙=1R
mdetuni.pg +˙=+R
mdetuni.tg ·˙=R
mdetuni.n φNFin
mdetuni.r φRRing
mdetuni.ff φD:BK
mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
mdetunilem5.ph ψφ
mdetunilem5.e ψEN
mdetunilem5.fgh ψaNbNFKGKHK
Assertion mdetunilem5 ψDaN,bNifa=EF+˙GH=DaN,bNifa=EFH+˙DaN,bNifa=EGH

Proof

Step Hyp Ref Expression
1 mdetuni.a A=NMatR
2 mdetuni.b B=BaseA
3 mdetuni.k K=BaseR
4 mdetuni.0g 0˙=0R
5 mdetuni.1r 1˙=1R
6 mdetuni.pg +˙=+R
7 mdetuni.tg ·˙=R
8 mdetuni.n φNFin
9 mdetuni.r φRRing
10 mdetuni.ff φD:BK
11 mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
12 mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
13 mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
14 mdetunilem5.ph ψφ
15 mdetunilem5.e ψEN
16 mdetunilem5.fgh ψaNbNFKGKHK
17 14 8 syl ψNFin
18 14 9 syl ψRRing
19 18 3ad2ant1 ψaNbNRRing
20 16 simp1d ψaNbNFK
21 16 simp2d ψaNbNGK
22 3 6 ringacl RRingFKGKF+˙GK
23 19 20 21 22 syl3anc ψaNbNF+˙GK
24 16 simp3d ψaNbNHK
25 23 24 ifcld ψaNbNifa=EF+˙GHK
26 1 3 2 17 18 25 matbas2d ψaN,bNifa=EF+˙GHB
27 20 24 ifcld ψaNbNifa=EFHK
28 1 3 2 17 18 27 matbas2d ψaN,bNifa=EFHB
29 21 24 ifcld ψaNbNifa=EGHK
30 1 3 2 17 18 29 matbas2d ψaN,bNifa=EGHB
31 snex EV
32 31 a1i ψEV
33 15 snssd ψEN
34 33 3ad2ant1 ψaEbNEN
35 simp2 ψaEbNaE
36 34 35 sseldd ψaEbNaN
37 36 20 syld3an2 ψaEbNFK
38 36 21 syld3an2 ψaEbNGK
39 eqidd ψaE,bNF=aE,bNF
40 eqidd ψaE,bNG=aE,bNG
41 32 17 37 38 39 40 offval22 ψaE,bNF+˙faE,bNG=aE,bNF+˙G
42 41 eqcomd ψaE,bNF+˙G=aE,bNF+˙faE,bNG
43 mposnif aE,bNifa=EF+˙GH=aE,bNF+˙G
44 mposnif aE,bNifa=EFH=aE,bNF
45 mposnif aE,bNifa=EGH=aE,bNG
46 44 45 oveq12i aE,bNifa=EFH+˙faE,bNifa=EGH=aE,bNF+˙faE,bNG
47 42 43 46 3eqtr4g ψaE,bNifa=EF+˙GH=aE,bNifa=EFH+˙faE,bNifa=EGH
48 ssid NN
49 resmpo ENNNaN,bNifa=EF+˙GHE×N=aE,bNifa=EF+˙GH
50 33 48 49 sylancl ψaN,bNifa=EF+˙GHE×N=aE,bNifa=EF+˙GH
51 resmpo ENNNaN,bNifa=EFHE×N=aE,bNifa=EFH
52 33 48 51 sylancl ψaN,bNifa=EFHE×N=aE,bNifa=EFH
53 resmpo ENNNaN,bNifa=EGHE×N=aE,bNifa=EGH
54 33 48 53 sylancl ψaN,bNifa=EGHE×N=aE,bNifa=EGH
55 52 54 oveq12d ψaN,bNifa=EFHE×N+˙faN,bNifa=EGHE×N=aE,bNifa=EFH+˙faE,bNifa=EGH
56 47 50 55 3eqtr4d ψaN,bNifa=EF+˙GHE×N=aN,bNifa=EFHE×N+˙faN,bNifa=EGHE×N
57 eldifsni aNEaE
58 57 3ad2ant2 ψaNEbNaE
59 58 neneqd ψaNEbN¬a=E
60 iffalse ¬a=Eifa=EF+˙GH=H
61 iffalse ¬a=Eifa=EFH=H
62 60 61 eqtr4d ¬a=Eifa=EF+˙GH=ifa=EFH
63 59 62 syl ψaNEbNifa=EF+˙GH=ifa=EFH
64 63 mpoeq3dva ψaNE,bNifa=EF+˙GH=aNE,bNifa=EFH
65 difss NEN
66 resmpo NENNNaN,bNifa=EF+˙GHNE×N=aNE,bNifa=EF+˙GH
67 65 48 66 mp2an aN,bNifa=EF+˙GHNE×N=aNE,bNifa=EF+˙GH
68 resmpo NENNNaN,bNifa=EFHNE×N=aNE,bNifa=EFH
69 65 48 68 mp2an aN,bNifa=EFHNE×N=aNE,bNifa=EFH
70 64 67 69 3eqtr4g ψaN,bNifa=EF+˙GHNE×N=aN,bNifa=EFHNE×N
71 iffalse ¬a=Eifa=EGH=H
72 60 71 eqtr4d ¬a=Eifa=EF+˙GH=ifa=EGH
73 59 72 syl ψaNEbNifa=EF+˙GH=ifa=EGH
74 73 mpoeq3dva ψaNE,bNifa=EF+˙GH=aNE,bNifa=EGH
75 resmpo NENNNaN,bNifa=EGHNE×N=aNE,bNifa=EGH
76 65 48 75 mp2an aN,bNifa=EGHNE×N=aNE,bNifa=EGH
77 74 67 76 3eqtr4g ψaN,bNifa=EF+˙GHNE×N=aN,bNifa=EGHNE×N
78 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem3 φaN,bNifa=EF+˙GHBaN,bNifa=EFHBaN,bNifa=EGHBENaN,bNifa=EF+˙GHE×N=aN,bNifa=EFHE×N+˙faN,bNifa=EGHE×NaN,bNifa=EF+˙GHNE×N=aN,bNifa=EFHNE×NaN,bNifa=EF+˙GHNE×N=aN,bNifa=EGHNE×NDaN,bNifa=EF+˙GH=DaN,bNifa=EFH+˙DaN,bNifa=EGH
79 14 26 28 30 15 56 70 77 78 syl332anc ψDaN,bNifa=EF+˙GH=DaN,bNifa=EFH+˙DaN,bNifa=EGH