| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
|
| 2 |
|
mdetuni.b |
|
| 3 |
|
mdetuni.k |
|
| 4 |
|
mdetuni.0g |
|
| 5 |
|
mdetuni.1r |
|
| 6 |
|
mdetuni.pg |
|
| 7 |
|
mdetuni.tg |
|
| 8 |
|
mdetuni.n |
|
| 9 |
|
mdetuni.r |
|
| 10 |
|
mdetuni.ff |
|
| 11 |
|
mdetuni.al |
|
| 12 |
|
mdetuni.li |
|
| 13 |
|
mdetuni.sc |
|
| 14 |
|
mdetunilem5.ph |
|
| 15 |
|
mdetunilem5.e |
|
| 16 |
|
mdetunilem5.fgh |
|
| 17 |
14 8
|
syl |
|
| 18 |
14 9
|
syl |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
16
|
simp1d |
|
| 21 |
16
|
simp2d |
|
| 22 |
3 6
|
ringacl |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
16
|
simp3d |
|
| 25 |
23 24
|
ifcld |
|
| 26 |
1 3 2 17 18 25
|
matbas2d |
|
| 27 |
20 24
|
ifcld |
|
| 28 |
1 3 2 17 18 27
|
matbas2d |
|
| 29 |
21 24
|
ifcld |
|
| 30 |
1 3 2 17 18 29
|
matbas2d |
|
| 31 |
|
snex |
|
| 32 |
31
|
a1i |
|
| 33 |
15
|
snssd |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
|
simp2 |
|
| 36 |
34 35
|
sseldd |
|
| 37 |
36 20
|
syld3an2 |
|
| 38 |
36 21
|
syld3an2 |
|
| 39 |
|
eqidd |
|
| 40 |
|
eqidd |
|
| 41 |
32 17 37 38 39 40
|
offval22 |
|
| 42 |
41
|
eqcomd |
|
| 43 |
|
mposnif |
|
| 44 |
|
mposnif |
|
| 45 |
|
mposnif |
|
| 46 |
44 45
|
oveq12i |
|
| 47 |
42 43 46
|
3eqtr4g |
|
| 48 |
|
ssid |
|
| 49 |
|
resmpo |
|
| 50 |
33 48 49
|
sylancl |
|
| 51 |
|
resmpo |
|
| 52 |
33 48 51
|
sylancl |
|
| 53 |
|
resmpo |
|
| 54 |
33 48 53
|
sylancl |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
47 50 55
|
3eqtr4d |
|
| 57 |
|
eldifsni |
|
| 58 |
57
|
3ad2ant2 |
|
| 59 |
58
|
neneqd |
|
| 60 |
|
iffalse |
|
| 61 |
|
iffalse |
|
| 62 |
60 61
|
eqtr4d |
|
| 63 |
59 62
|
syl |
|
| 64 |
63
|
mpoeq3dva |
|
| 65 |
|
difss |
|
| 66 |
|
resmpo |
|
| 67 |
65 48 66
|
mp2an |
|
| 68 |
|
resmpo |
|
| 69 |
65 48 68
|
mp2an |
|
| 70 |
64 67 69
|
3eqtr4g |
|
| 71 |
|
iffalse |
|
| 72 |
60 71
|
eqtr4d |
|
| 73 |
59 72
|
syl |
|
| 74 |
73
|
mpoeq3dva |
|
| 75 |
|
resmpo |
|
| 76 |
65 48 75
|
mp2an |
|
| 77 |
74 67 76
|
3eqtr4g |
|
| 78 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem3 |
|
| 79 |
14 26 28 30 15 56 70 77 78
|
syl332anc |
|