Metamath Proof Explorer


Theorem mdetunilem5

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetunilem5.ph ψ φ
mdetunilem5.e ψ E N
mdetunilem5.fgh ψ a N b N F K G K H K
Assertion mdetunilem5 ψ D a N , b N if a = E F + ˙ G H = D a N , b N if a = E F H + ˙ D a N , b N if a = E G H

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetunilem5.ph ψ φ
15 mdetunilem5.e ψ E N
16 mdetunilem5.fgh ψ a N b N F K G K H K
17 14 8 syl ψ N Fin
18 14 9 syl ψ R Ring
19 18 3ad2ant1 ψ a N b N R Ring
20 16 simp1d ψ a N b N F K
21 16 simp2d ψ a N b N G K
22 3 6 ringacl R Ring F K G K F + ˙ G K
23 19 20 21 22 syl3anc ψ a N b N F + ˙ G K
24 16 simp3d ψ a N b N H K
25 23 24 ifcld ψ a N b N if a = E F + ˙ G H K
26 1 3 2 17 18 25 matbas2d ψ a N , b N if a = E F + ˙ G H B
27 20 24 ifcld ψ a N b N if a = E F H K
28 1 3 2 17 18 27 matbas2d ψ a N , b N if a = E F H B
29 21 24 ifcld ψ a N b N if a = E G H K
30 1 3 2 17 18 29 matbas2d ψ a N , b N if a = E G H B
31 snex E V
32 31 a1i ψ E V
33 15 snssd ψ E N
34 33 3ad2ant1 ψ a E b N E N
35 simp2 ψ a E b N a E
36 34 35 sseldd ψ a E b N a N
37 36 20 syld3an2 ψ a E b N F K
38 36 21 syld3an2 ψ a E b N G K
39 eqidd ψ a E , b N F = a E , b N F
40 eqidd ψ a E , b N G = a E , b N G
41 32 17 37 38 39 40 offval22 ψ a E , b N F + ˙ f a E , b N G = a E , b N F + ˙ G
42 41 eqcomd ψ a E , b N F + ˙ G = a E , b N F + ˙ f a E , b N G
43 mposnif a E , b N if a = E F + ˙ G H = a E , b N F + ˙ G
44 mposnif a E , b N if a = E F H = a E , b N F
45 mposnif a E , b N if a = E G H = a E , b N G
46 44 45 oveq12i a E , b N if a = E F H + ˙ f a E , b N if a = E G H = a E , b N F + ˙ f a E , b N G
47 42 43 46 3eqtr4g ψ a E , b N if a = E F + ˙ G H = a E , b N if a = E F H + ˙ f a E , b N if a = E G H
48 ssid N N
49 resmpo E N N N a N , b N if a = E F + ˙ G H E × N = a E , b N if a = E F + ˙ G H
50 33 48 49 sylancl ψ a N , b N if a = E F + ˙ G H E × N = a E , b N if a = E F + ˙ G H
51 resmpo E N N N a N , b N if a = E F H E × N = a E , b N if a = E F H
52 33 48 51 sylancl ψ a N , b N if a = E F H E × N = a E , b N if a = E F H
53 resmpo E N N N a N , b N if a = E G H E × N = a E , b N if a = E G H
54 33 48 53 sylancl ψ a N , b N if a = E G H E × N = a E , b N if a = E G H
55 52 54 oveq12d ψ a N , b N if a = E F H E × N + ˙ f a N , b N if a = E G H E × N = a E , b N if a = E F H + ˙ f a E , b N if a = E G H
56 47 50 55 3eqtr4d ψ a N , b N if a = E F + ˙ G H E × N = a N , b N if a = E F H E × N + ˙ f a N , b N if a = E G H E × N
57 eldifsni a N E a E
58 57 3ad2ant2 ψ a N E b N a E
59 58 neneqd ψ a N E b N ¬ a = E
60 iffalse ¬ a = E if a = E F + ˙ G H = H
61 iffalse ¬ a = E if a = E F H = H
62 60 61 eqtr4d ¬ a = E if a = E F + ˙ G H = if a = E F H
63 59 62 syl ψ a N E b N if a = E F + ˙ G H = if a = E F H
64 63 mpoeq3dva ψ a N E , b N if a = E F + ˙ G H = a N E , b N if a = E F H
65 difss N E N
66 resmpo N E N N N a N , b N if a = E F + ˙ G H N E × N = a N E , b N if a = E F + ˙ G H
67 65 48 66 mp2an a N , b N if a = E F + ˙ G H N E × N = a N E , b N if a = E F + ˙ G H
68 resmpo N E N N N a N , b N if a = E F H N E × N = a N E , b N if a = E F H
69 65 48 68 mp2an a N , b N if a = E F H N E × N = a N E , b N if a = E F H
70 64 67 69 3eqtr4g ψ a N , b N if a = E F + ˙ G H N E × N = a N , b N if a = E F H N E × N
71 iffalse ¬ a = E if a = E G H = H
72 60 71 eqtr4d ¬ a = E if a = E F + ˙ G H = if a = E G H
73 59 72 syl ψ a N E b N if a = E F + ˙ G H = if a = E G H
74 73 mpoeq3dva ψ a N E , b N if a = E F + ˙ G H = a N E , b N if a = E G H
75 resmpo N E N N N a N , b N if a = E G H N E × N = a N E , b N if a = E G H
76 65 48 75 mp2an a N , b N if a = E G H N E × N = a N E , b N if a = E G H
77 74 67 76 3eqtr4g ψ a N , b N if a = E F + ˙ G H N E × N = a N , b N if a = E G H N E × N
78 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem3 φ a N , b N if a = E F + ˙ G H B a N , b N if a = E F H B a N , b N if a = E G H B E N a N , b N if a = E F + ˙ G H E × N = a N , b N if a = E F H E × N + ˙ f a N , b N if a = E G H E × N a N , b N if a = E F + ˙ G H N E × N = a N , b N if a = E F H N E × N a N , b N if a = E F + ˙ G H N E × N = a N , b N if a = E G H N E × N D a N , b N if a = E F + ˙ G H = D a N , b N if a = E F H + ˙ D a N , b N if a = E G H
79 14 26 28 30 15 56 70 77 78 syl332anc ψ D a N , b N if a = E F + ˙ G H = D a N , b N if a = E F H + ˙ D a N , b N if a = E G H