Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt21.1 | |
|
metakunt21.2 | |
||
metakunt21.3 | |
||
metakunt21.4 | |
||
metakunt21.5 | |
||
metakunt21.6 | |
||
metakunt21.7 | |
||
metakunt21.8 | |
||
metakunt21.9 | |
||
Assertion | metakunt21 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt21.1 | |
|
2 | metakunt21.2 | |
|
3 | metakunt21.3 | |
|
4 | metakunt21.4 | |
|
5 | metakunt21.5 | |
|
6 | metakunt21.6 | |
|
7 | metakunt21.7 | |
|
8 | metakunt21.8 | |
|
9 | metakunt21.9 | |
|
10 | 4 | a1i | |
11 | eqeq1 | |
|
12 | breq1 | |
|
13 | oveq1 | |
|
14 | oveq1 | |
|
15 | 12 13 14 | ifbieq12d | |
16 | 11 15 | ifbieq2d | |
17 | 16 | adantl | |
18 | 8 | iffalsed | |
19 | 9 | iftrued | |
20 | 18 19 | eqtrd | |
21 | 20 | adantr | |
22 | 17 21 | eqtrd | |
23 | 7 | elfzelzd | |
24 | 1 | nnzd | |
25 | 2 | nnzd | |
26 | 24 25 | zsubcld | |
27 | 23 26 | zaddcld | |
28 | 10 22 7 27 | fvmptd | |
29 | 1 2 3 4 5 6 | metakunt19 | |
30 | 29 | simpld | |
31 | 30 | simp3d | |
32 | 29 | simprd | |
33 | indir | |
|
34 | 33 | a1i | |
35 | 1 2 3 | metakunt18 | |
36 | 35 | simpld | |
37 | 36 | simp2d | |
38 | 36 | simp3d | |
39 | 37 38 | uneq12d | |
40 | unidm | |
|
41 | 40 | a1i | |
42 | 39 41 | eqtrd | |
43 | 34 42 | eqtrd | |
44 | 1zzd | |
|
45 | 25 44 | zsubcld | |
46 | elfznn | |
|
47 | 7 46 | syl | |
48 | 47 | nnge1d | |
49 | zltlem1 | |
|
50 | 23 25 49 | syl2anc | |
51 | 9 50 | mpbid | |
52 | 44 45 23 48 51 | elfzd | |
53 | elun1 | |
|
54 | 52 53 | syl | |
55 | 31 32 43 54 | fvun1d | |
56 | 30 | simp1d | |
57 | 30 | simp2d | |
58 | 36 | simp1d | |
59 | 56 57 58 52 | fvun1d | |
60 | 5 | a1i | |
61 | 13 | adantl | |
62 | 60 61 52 27 | fvmptd | |
63 | 59 62 | eqtrd | |
64 | 55 63 | eqtrd | |
65 | 64 | eqcomd | |
66 | 28 65 | eqtrd | |