Metamath Proof Explorer


Theorem metakunt21

Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt21.1 φM
metakunt21.2 φI
metakunt21.3 φIM
metakunt21.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
metakunt21.5 C=x1I1x+M-I
metakunt21.6 D=xIM1x+1-I
metakunt21.7 φX1M
metakunt21.8 φ¬X=M
metakunt21.9 φX<I
Assertion metakunt21 φBX=CDMMX

Proof

Step Hyp Ref Expression
1 metakunt21.1 φM
2 metakunt21.2 φI
3 metakunt21.3 φIM
4 metakunt21.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 metakunt21.5 C=x1I1x+M-I
6 metakunt21.6 D=xIM1x+1-I
7 metakunt21.7 φX1M
8 metakunt21.8 φ¬X=M
9 metakunt21.9 φX<I
10 4 a1i φB=x1Mifx=MMifx<Ix+M-Ix+1-I
11 eqeq1 x=Xx=MX=M
12 breq1 x=Xx<IX<I
13 oveq1 x=Xx+M-I=X+M-I
14 oveq1 x=Xx+1-I=X+1-I
15 12 13 14 ifbieq12d x=Xifx<Ix+M-Ix+1-I=ifX<IX+M-IX+1-I
16 11 15 ifbieq2d x=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
17 16 adantl φx=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
18 8 iffalsed φifX=MMifX<IX+M-IX+1-I=ifX<IX+M-IX+1-I
19 9 iftrued φifX<IX+M-IX+1-I=X+M-I
20 18 19 eqtrd φifX=MMifX<IX+M-IX+1-I=X+M-I
21 20 adantr φx=XifX=MMifX<IX+M-IX+1-I=X+M-I
22 17 21 eqtrd φx=Xifx=MMifx<Ix+M-Ix+1-I=X+M-I
23 7 elfzelzd φX
24 1 nnzd φM
25 2 nnzd φI
26 24 25 zsubcld φMI
27 23 26 zaddcld φX+M-I
28 10 22 7 27 fvmptd φBX=X+M-I
29 1 2 3 4 5 6 metakunt19 φCFn1I1DFnIM1CDFn1I1IM1MMFnM
30 29 simpld φCFn1I1DFnIM1CDFn1I1IM1
31 30 simp3d φCDFn1I1IM1
32 29 simprd φMMFnM
33 indir 1I1IM1M=1I1MIM1M
34 33 a1i φ1I1IM1M=1I1MIM1M
35 1 2 3 metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=
36 35 simpld φ1I1IM1=1I1M=IM1M=
37 36 simp2d φ1I1M=
38 36 simp3d φIM1M=
39 37 38 uneq12d φ1I1MIM1M=
40 unidm =
41 40 a1i φ=
42 39 41 eqtrd φ1I1MIM1M=
43 34 42 eqtrd φ1I1IM1M=
44 1zzd φ1
45 25 44 zsubcld φI1
46 elfznn X1MX
47 7 46 syl φX
48 47 nnge1d φ1X
49 zltlem1 XIX<IXI1
50 23 25 49 syl2anc φX<IXI1
51 9 50 mpbid φXI1
52 44 45 23 48 51 elfzd φX1I1
53 elun1 X1I1X1I1IM1
54 52 53 syl φX1I1IM1
55 31 32 43 54 fvun1d φCDMMX=CDX
56 30 simp1d φCFn1I1
57 30 simp2d φDFnIM1
58 36 simp1d φ1I1IM1=
59 56 57 58 52 fvun1d φCDX=CX
60 5 a1i φC=x1I1x+M-I
61 13 adantl φx=Xx+M-I=X+M-I
62 60 61 52 27 fvmptd φCX=X+M-I
63 59 62 eqtrd φCDX=X+M-I
64 55 63 eqtrd φCDMMX=X+M-I
65 64 eqcomd φX+M-I=CDMMX
66 28 65 eqtrd φBX=CDMMX