Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt28.1 |
|
2 |
|
metakunt28.2 |
|
3 |
|
metakunt28.3 |
|
4 |
|
metakunt28.4 |
|
5 |
|
metakunt28.5 |
|
6 |
|
metakunt28.6 |
|
7 |
|
metakunt28.7 |
|
8 |
|
metakunt28.8 |
|
9 |
5
|
a1i |
|
10 |
7
|
adantr |
|
11 |
|
simpr |
|
12 |
11
|
eqeq1d |
|
13 |
12
|
notbid |
|
14 |
10 13
|
mpbird |
|
15 |
14
|
iffalsed |
|
16 |
8
|
adantr |
|
17 |
11
|
breq1d |
|
18 |
17
|
notbid |
|
19 |
16 18
|
mpbird |
|
20 |
19
|
iffalsed |
|
21 |
11
|
oveq1d |
|
22 |
20 21
|
eqtrd |
|
23 |
15 22
|
eqtrd |
|
24 |
4
|
elfzelzd |
|
25 |
|
1zzd |
|
26 |
24 25
|
zsubcld |
|
27 |
9 23 4 26
|
fvmptd |
|
28 |
27
|
fveq2d |
|
29 |
6
|
a1i |
|
30 |
26
|
zred |
|
31 |
24
|
zred |
|
32 |
1
|
nnred |
|
33 |
|
1rp |
|
34 |
33
|
a1i |
|
35 |
31 34
|
ltsubrpd |
|
36 |
|
elfzle2 |
|
37 |
4 36
|
syl |
|
38 |
30 31 32 35 37
|
ltletrd |
|
39 |
30 38
|
ltned |
|
40 |
39
|
adantr |
|
41 |
40
|
neneqd |
|
42 |
|
simpr |
|
43 |
42
|
eqeq1d |
|
44 |
43
|
notbid |
|
45 |
41 44
|
mpbird |
|
46 |
45
|
iffalsed |
|
47 |
7
|
neqned |
|
48 |
2
|
nnred |
|
49 |
48 31 8
|
nltled |
|
50 |
48 31 49
|
leltned |
|
51 |
47 50
|
mpbird |
|
52 |
2
|
nnzd |
|
53 |
52 24
|
zltlem1d |
|
54 |
51 53
|
mpbid |
|
55 |
48 30
|
lenltd |
|
56 |
54 55
|
mpbid |
|
57 |
56
|
adantr |
|
58 |
42
|
breq1d |
|
59 |
58
|
notbid |
|
60 |
57 59
|
mpbird |
|
61 |
60
|
iffalsed |
|
62 |
42
|
oveq1d |
|
63 |
24
|
zcnd |
|
64 |
|
1cnd |
|
65 |
2
|
nncnd |
|
66 |
63 64 65
|
npncand |
|
67 |
66
|
adantr |
|
68 |
62 67
|
eqtrd |
|
69 |
61 68
|
eqtrd |
|
70 |
46 69
|
eqtrd |
|
71 |
1
|
nnzd |
|
72 |
|
1red |
|
73 |
2
|
nnge1d |
|
74 |
72 48 31 73 51
|
lelttrd |
|
75 |
25 24
|
zltlem1d |
|
76 |
74 75
|
mpbid |
|
77 |
31 72
|
resubcld |
|
78 |
|
0le1 |
|
79 |
78
|
a1i |
|
80 |
31 72
|
subge02d |
|
81 |
79 80
|
mpbid |
|
82 |
77 31 32 81 37
|
letrd |
|
83 |
25 71 26 76 82
|
elfzd |
|
84 |
24 52
|
zsubcld |
|
85 |
29 70 83 84
|
fvmptd |
|
86 |
28 85
|
eqtrd |
|