Metamath Proof Explorer


Theorem metakunt28

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt28.1 φM
metakunt28.2 φI
metakunt28.3 φIM
metakunt28.4 φX1M
metakunt28.5 A=x1Mifx=IMifx<Ixx1
metakunt28.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt28.7 φ¬X=I
metakunt28.8 φ¬X<I
Assertion metakunt28 φBAX=XI

Proof

Step Hyp Ref Expression
1 metakunt28.1 φM
2 metakunt28.2 φI
3 metakunt28.3 φIM
4 metakunt28.4 φX1M
5 metakunt28.5 A=x1Mifx=IMifx<Ixx1
6 metakunt28.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt28.7 φ¬X=I
8 metakunt28.8 φ¬X<I
9 5 a1i φA=x1Mifx=IMifx<Ixx1
10 7 adantr φx=X¬X=I
11 simpr φx=Xx=X
12 11 eqeq1d φx=Xx=IX=I
13 12 notbid φx=X¬x=I¬X=I
14 10 13 mpbird φx=X¬x=I
15 14 iffalsed φx=Xifx=IMifx<Ixx1=ifx<Ixx1
16 8 adantr φx=X¬X<I
17 11 breq1d φx=Xx<IX<I
18 17 notbid φx=X¬x<I¬X<I
19 16 18 mpbird φx=X¬x<I
20 19 iffalsed φx=Xifx<Ixx1=x1
21 11 oveq1d φx=Xx1=X1
22 20 21 eqtrd φx=Xifx<Ixx1=X1
23 15 22 eqtrd φx=Xifx=IMifx<Ixx1=X1
24 4 elfzelzd φX
25 1zzd φ1
26 24 25 zsubcld φX1
27 9 23 4 26 fvmptd φAX=X1
28 27 fveq2d φBAX=BX1
29 6 a1i φB=z1Mifz=MMifz<Iz+M-Iz+1-I
30 26 zred φX1
31 24 zred φX
32 1 nnred φM
33 1rp 1+
34 33 a1i φ1+
35 31 34 ltsubrpd φX1<X
36 elfzle2 X1MXM
37 4 36 syl φXM
38 30 31 32 35 37 ltletrd φX1<M
39 30 38 ltned φX1M
40 39 adantr φz=X1X1M
41 40 neneqd φz=X1¬X1=M
42 simpr φz=X1z=X1
43 42 eqeq1d φz=X1z=MX1=M
44 43 notbid φz=X1¬z=M¬X1=M
45 41 44 mpbird φz=X1¬z=M
46 45 iffalsed φz=X1ifz=MMifz<Iz+M-Iz+1-I=ifz<Iz+M-Iz+1-I
47 7 neqned φXI
48 2 nnred φI
49 48 31 8 nltled φIX
50 48 31 49 leltned φI<XXI
51 47 50 mpbird φI<X
52 2 nnzd φI
53 52 24 zltlem1d φI<XIX1
54 51 53 mpbid φIX1
55 48 30 lenltd φIX1¬X1<I
56 54 55 mpbid φ¬X1<I
57 56 adantr φz=X1¬X1<I
58 42 breq1d φz=X1z<IX1<I
59 58 notbid φz=X1¬z<I¬X1<I
60 57 59 mpbird φz=X1¬z<I
61 60 iffalsed φz=X1ifz<Iz+M-Iz+1-I=z+1-I
62 42 oveq1d φz=X1z+1-I=X1+1-I
63 24 zcnd φX
64 1cnd φ1
65 2 nncnd φI
66 63 64 65 npncand φX1+1-I=XI
67 66 adantr φz=X1X1+1-I=XI
68 62 67 eqtrd φz=X1z+1-I=XI
69 61 68 eqtrd φz=X1ifz<Iz+M-Iz+1-I=XI
70 46 69 eqtrd φz=X1ifz=MMifz<Iz+M-Iz+1-I=XI
71 1 nnzd φM
72 1red φ1
73 2 nnge1d φ1I
74 72 48 31 73 51 lelttrd φ1<X
75 25 24 zltlem1d φ1<X1X1
76 74 75 mpbid φ1X1
77 31 72 resubcld φX1
78 0le1 01
79 78 a1i φ01
80 31 72 subge02d φ01X1X
81 79 80 mpbid φX1X
82 77 31 32 81 37 letrd φX1M
83 25 71 26 76 82 elfzd φX11M
84 24 52 zsubcld φXI
85 29 70 83 84 fvmptd φBX1=XI
86 28 85 eqtrd φBAX=XI