Metamath Proof Explorer


Theorem metdseq0

Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
Assertion metdseq0 D∞MetXSXAXFA=0AclsJS

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 simpll1 D∞MetXSXAXFA=0zJAzD∞MetX
4 simprl D∞MetXSXAXFA=0zJAzzJ
5 simprr D∞MetXSXAXFA=0zJAzAz
6 2 mopni2 D∞MetXzJAzr+AballDrz
7 3 4 5 6 syl3anc D∞MetXSXAXFA=0zJAzr+AballDrz
8 simprr D∞MetXSXAXFA=0zJAzr+AballDrzAballDrz
9 8 ssrind D∞MetXSXAXFA=0zJAzr+AballDrzAballDrSzS
10 rpgt0 r+0<r
11 0re 0
12 rpre r+r
13 ltnle 0r0<r¬r0
14 11 12 13 sylancr r+0<r¬r0
15 10 14 mpbid r+¬r0
16 15 ad2antrl D∞MetXSXAXFA=0zJAzr+AballDrz¬r0
17 simpllr D∞MetXSXAXFA=0zJAzr+AballDrzFA=0
18 17 breq2d D∞MetXSXAXFA=0zJAzr+AballDrzrFAr0
19 3 adantr D∞MetXSXAXFA=0zJAzr+AballDrzD∞MetX
20 simpl2 D∞MetXSXAXFA=0SX
21 20 ad2antrr D∞MetXSXAXFA=0zJAzr+AballDrzSX
22 simpl3 D∞MetXSXAXFA=0AX
23 22 ad2antrr D∞MetXSXAXFA=0zJAzr+AballDrzAX
24 rpxr r+r*
25 24 ad2antrl D∞MetXSXAXFA=0zJAzr+AballDrzr*
26 1 metdsge D∞MetXSXAXr*rFASAballDr=
27 19 21 23 25 26 syl31anc D∞MetXSXAXFA=0zJAzr+AballDrzrFASAballDr=
28 18 27 bitr3d D∞MetXSXAXFA=0zJAzr+AballDrzr0SAballDr=
29 incom SAballDr=AballDrS
30 29 eqeq1i SAballDr=AballDrS=
31 28 30 bitrdi D∞MetXSXAXFA=0zJAzr+AballDrzr0AballDrS=
32 31 necon3bbid D∞MetXSXAXFA=0zJAzr+AballDrz¬r0AballDrS
33 16 32 mpbid D∞MetXSXAXFA=0zJAzr+AballDrzAballDrS
34 ssn0 AballDrSzSAballDrSzS
35 9 33 34 syl2anc D∞MetXSXAXFA=0zJAzr+AballDrzzS
36 7 35 rexlimddv D∞MetXSXAXFA=0zJAzzS
37 36 expr D∞MetXSXAXFA=0zJAzzS
38 37 ralrimiva D∞MetXSXAXFA=0zJAzzS
39 2 mopntopon D∞MetXJTopOnX
40 39 3ad2ant1 D∞MetXSXAXJTopOnX
41 40 adantr D∞MetXSXAXFA=0JTopOnX
42 topontop JTopOnXJTop
43 41 42 syl D∞MetXSXAXFA=0JTop
44 toponuni JTopOnXX=J
45 41 44 syl D∞MetXSXAXFA=0X=J
46 20 45 sseqtrd D∞MetXSXAXFA=0SJ
47 22 45 eleqtrd D∞MetXSXAXFA=0AJ
48 eqid J=J
49 48 elcls JTopSJAJAclsJSzJAzzS
50 43 46 47 49 syl3anc D∞MetXSXAXFA=0AclsJSzJAzzS
51 38 50 mpbird D∞MetXSXAXFA=0AclsJS
52 incom AballDFAS=SAballDFA
53 1 metdsf D∞MetXSXF:X0+∞
54 53 ffvelrnda D∞MetXSXAXFA0+∞
55 54 3impa D∞MetXSXAXFA0+∞
56 eliccxr FA0+∞FA*
57 55 56 syl D∞MetXSXAXFA*
58 57 xrleidd D∞MetXSXAXFAFA
59 1 metdsge D∞MetXSXAXFA*FAFASAballDFA=
60 57 59 mpdan D∞MetXSXAXFAFASAballDFA=
61 58 60 mpbid D∞MetXSXAXSAballDFA=
62 52 61 eqtrid D∞MetXSXAXAballDFAS=
63 62 adantr D∞MetXSXAXAclsJSAballDFAS=
64 40 ad2antrr D∞MetXSXAXAclsJS0<FAJTopOnX
65 64 42 syl D∞MetXSXAXAclsJS0<FAJTop
66 simpll2 D∞MetXSXAXAclsJS0<FASX
67 64 44 syl D∞MetXSXAXAclsJS0<FAX=J
68 66 67 sseqtrd D∞MetXSXAXAclsJS0<FASJ
69 simplr D∞MetXSXAXAclsJS0<FAAclsJS
70 simpll1 D∞MetXSXAXAclsJS0<FAD∞MetX
71 simpll3 D∞MetXSXAXAclsJS0<FAAX
72 57 ad2antrr D∞MetXSXAXAclsJS0<FAFA*
73 2 blopn D∞MetXAXFA*AballDFAJ
74 70 71 72 73 syl3anc D∞MetXSXAXAclsJS0<FAAballDFAJ
75 simpr D∞MetXSXAXAclsJS0<FA0<FA
76 xblcntr D∞MetXAXFA*0<FAAAballDFA
77 70 71 72 75 76 syl112anc D∞MetXSXAXAclsJS0<FAAAballDFA
78 48 clsndisj JTopSJAclsJSAballDFAJAAballDFAAballDFAS
79 65 68 69 74 77 78 syl32anc D∞MetXSXAXAclsJS0<FAAballDFAS
80 79 ex D∞MetXSXAXAclsJS0<FAAballDFAS
81 80 necon2bd D∞MetXSXAXAclsJSAballDFAS=¬0<FA
82 63 81 mpd D∞MetXSXAXAclsJS¬0<FA
83 elxrge0 FA0+∞FA*0FA
84 83 simprbi FA0+∞0FA
85 55 84 syl D∞MetXSXAX0FA
86 0xr 0*
87 xrleloe 0*FA*0FA0<FA0=FA
88 86 57 87 sylancr D∞MetXSXAX0FA0<FA0=FA
89 85 88 mpbid D∞MetXSXAX0<FA0=FA
90 89 adantr D∞MetXSXAXAclsJS0<FA0=FA
91 90 ord D∞MetXSXAXAclsJS¬0<FA0=FA
92 82 91 mpd D∞MetXSXAXAclsJS0=FA
93 92 eqcomd D∞MetXSXAXAclsJSFA=0
94 51 93 impbida D∞MetXSXAXFA=0AclsJS