Step |
Hyp |
Ref |
Expression |
1 |
|
metf1o.2 |
|
2 |
|
f1of |
|
3 |
|
ffvelrn |
|
4 |
3
|
ex |
|
5 |
|
ffvelrn |
|
6 |
5
|
ex |
|
7 |
4 6
|
anim12d |
|
8 |
2 7
|
syl |
|
9 |
|
metcl |
|
10 |
9
|
3expib |
|
11 |
8 10
|
sylan9r |
|
12 |
11
|
3adant1 |
|
13 |
12
|
ralrimivv |
|
14 |
1
|
fmpo |
|
15 |
13 14
|
sylib |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq1d |
|
18 |
|
fveq2 |
|
19 |
18
|
oveq2d |
|
20 |
|
ovex |
|
21 |
17 19 1 20
|
ovmpo |
|
22 |
21
|
eqeq1d |
|
23 |
22
|
adantl |
|
24 |
|
ffvelrn |
|
25 |
24
|
ex |
|
26 |
|
ffvelrn |
|
27 |
26
|
ex |
|
28 |
25 27
|
anim12d |
|
29 |
2 28
|
syl |
|
30 |
29
|
imp |
|
31 |
30
|
adantll |
|
32 |
|
meteq0 |
|
33 |
32
|
3expb |
|
34 |
33
|
adantlr |
|
35 |
31 34
|
syldan |
|
36 |
|
f1of1 |
|
37 |
|
f1fveq |
|
38 |
36 37
|
sylan |
|
39 |
38
|
adantll |
|
40 |
23 35 39
|
3bitrd |
|
41 |
|
ffvelrn |
|
42 |
41
|
ex |
|
43 |
28 42
|
anim12d |
|
44 |
2 43
|
syl |
|
45 |
44
|
imp |
|
46 |
45
|
adantll |
|
47 |
|
mettri2 |
|
48 |
47
|
expcom |
|
49 |
48
|
3expb |
|
50 |
49
|
ancoms |
|
51 |
50
|
impcom |
|
52 |
51
|
adantlr |
|
53 |
46 52
|
syldan |
|
54 |
53
|
anassrs |
|
55 |
21
|
adantr |
|
56 |
|
fveq2 |
|
57 |
56
|
oveq1d |
|
58 |
|
fveq2 |
|
59 |
58
|
oveq2d |
|
60 |
|
ovex |
|
61 |
57 59 1 60
|
ovmpo |
|
62 |
61
|
ancoms |
|
63 |
62
|
adantlr |
|
64 |
18
|
oveq2d |
|
65 |
|
ovex |
|
66 |
57 64 1 65
|
ovmpo |
|
67 |
66
|
ancoms |
|
68 |
67
|
adantll |
|
69 |
63 68
|
oveq12d |
|
70 |
55 69
|
breq12d |
|
71 |
70
|
adantll |
|
72 |
54 71
|
mpbird |
|
73 |
72
|
ralrimiva |
|
74 |
40 73
|
jca |
|
75 |
74
|
3adantl1 |
|
76 |
75
|
ex |
|
77 |
76
|
ralrimivv |
|
78 |
|
ismet |
|
79 |
78
|
3ad2ant1 |
|
80 |
15 77 79
|
mpbir2and |
|