Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | metider | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metidss | |
|
2 | xpss | |
|
3 | 1 2 | sstrdi | |
4 | df-rel | |
|
5 | 3 4 | sylibr | |
6 | 1 | ssbrd | |
7 | 6 | imp | |
8 | brxp | |
|
9 | 7 8 | sylib | |
10 | psmetsym | |
|
11 | 10 | 3expb | |
12 | 11 | eqeq1d | |
13 | metidv | |
|
14 | metidv | |
|
15 | 14 | ancom2s | |
16 | 12 13 15 | 3bitr4d | |
17 | 16 | biimpd | |
18 | 17 | impancom | |
19 | 9 18 | mpd | |
20 | simpl | |
|
21 | simprr | |
|
22 | 1 | ssbrd | |
23 | 22 | imp | |
24 | brxp | |
|
25 | 23 24 | sylib | |
26 | 21 25 | syldan | |
27 | 26 | simpld | |
28 | simprl | |
|
29 | 28 9 | syldan | |
30 | 29 | simpld | |
31 | 26 | simprd | |
32 | psmettri2 | |
|
33 | 20 27 30 31 32 | syl13anc | |
34 | 29 11 | syldan | |
35 | 29 13 | syldan | |
36 | 28 35 | mpbid | |
37 | 34 36 | eqtr3d | |
38 | metidv | |
|
39 | 26 38 | syldan | |
40 | 21 39 | mpbid | |
41 | 37 40 | oveq12d | |
42 | 0xr | |
|
43 | xaddrid | |
|
44 | 42 43 | ax-mp | |
45 | 41 44 | eqtrdi | |
46 | 33 45 | breqtrd | |
47 | psmetge0 | |
|
48 | 20 30 31 47 | syl3anc | |
49 | psmetcl | |
|
50 | 20 30 31 49 | syl3anc | |
51 | xrletri3 | |
|
52 | 50 42 51 | sylancl | |
53 | 46 48 52 | mpbir2and | |
54 | metidv | |
|
55 | 20 30 31 54 | syl12anc | |
56 | 53 55 | mpbird | |
57 | psmet0 | |
|
58 | metidv | |
|
59 | 58 | anabsan2 | |
60 | 57 59 | mpbird | |
61 | 1 | ssbrd | |
62 | 61 | imp | |
63 | brxp | |
|
64 | 62 63 | sylib | |
65 | 64 | simpld | |
66 | 60 65 | impbida | |
67 | 5 19 56 66 | iserd | |