Metamath Proof Explorer


Theorem mhmvlin

Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses mhmvlin.b B=BaseM
mhmvlin.p +˙=+M
mhmvlin.q ˙=+N
Assertion mhmvlin FMMndHomNXBIYBIFX+˙fY=FX˙fFY

Proof

Step Hyp Ref Expression
1 mhmvlin.b B=BaseM
2 mhmvlin.p +˙=+M
3 mhmvlin.q ˙=+N
4 simpl1 FMMndHomNXBIYBIyIFMMndHomN
5 elmapi XBIX:IB
6 5 3ad2ant2 FMMndHomNXBIYBIX:IB
7 6 ffvelcdmda FMMndHomNXBIYBIyIXyB
8 elmapi YBIY:IB
9 8 3ad2ant3 FMMndHomNXBIYBIY:IB
10 9 ffvelcdmda FMMndHomNXBIYBIyIYyB
11 1 2 3 mhmlin FMMndHomNXyBYyBFXy+˙Yy=FXy˙FYy
12 4 7 10 11 syl3anc FMMndHomNXBIYBIyIFXy+˙Yy=FXy˙FYy
13 12 mpteq2dva FMMndHomNXBIYBIyIFXy+˙Yy=yIFXy˙FYy
14 mhmrcl1 FMMndHomNMMnd
15 14 adantr FMMndHomNyIMMnd
16 15 3ad2antl1 FMMndHomNXBIYBIyIMMnd
17 1 2 mndcl MMndXyBYyBXy+˙YyB
18 16 7 10 17 syl3anc FMMndHomNXBIYBIyIXy+˙YyB
19 elmapex YBIBVIV
20 19 simprd YBIIV
21 20 3ad2ant3 FMMndHomNXBIYBIIV
22 6 feqmptd FMMndHomNXBIYBIX=yIXy
23 9 feqmptd FMMndHomNXBIYBIY=yIYy
24 21 7 10 22 23 offval2 FMMndHomNXBIYBIX+˙fY=yIXy+˙Yy
25 eqid BaseN=BaseN
26 1 25 mhmf FMMndHomNF:BBaseN
27 26 3ad2ant1 FMMndHomNXBIYBIF:BBaseN
28 27 feqmptd FMMndHomNXBIYBIF=zBFz
29 fveq2 z=Xy+˙YyFz=FXy+˙Yy
30 18 24 28 29 fmptco FMMndHomNXBIYBIFX+˙fY=yIFXy+˙Yy
31 fvexd FMMndHomNXBIYBIyIFXyV
32 fvexd FMMndHomNXBIYBIyIFYyV
33 fcompt F:BBaseNX:IBFX=yIFXy
34 27 6 33 syl2anc FMMndHomNXBIYBIFX=yIFXy
35 fcompt F:BBaseNY:IBFY=yIFYy
36 27 9 35 syl2anc FMMndHomNXBIYBIFY=yIFYy
37 21 31 32 34 36 offval2 FMMndHomNXBIYBIFX˙fFY=yIFXy˙FYy
38 13 30 37 3eqtr4d FMMndHomNXBIYBIFX+˙fY=FX˙fFY