Metamath Proof Explorer


Theorem mhpvscacl

Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhpvscacl.h H = I mHomP R
mhpvscacl.p P = I mPoly R
mhpvscacl.t · ˙ = P
mhpvscacl.k K = Base R
mhpvscacl.i φ I V
mhpvscacl.r φ R Ring
mhpvscacl.n φ N 0
mhpvscacl.x φ X K
mhpvscacl.f φ F H N
Assertion mhpvscacl φ X · ˙ F H N

Proof

Step Hyp Ref Expression
1 mhpvscacl.h H = I mHomP R
2 mhpvscacl.p P = I mPoly R
3 mhpvscacl.t · ˙ = P
4 mhpvscacl.k K = Base R
5 mhpvscacl.i φ I V
6 mhpvscacl.r φ R Ring
7 mhpvscacl.n φ N 0
8 mhpvscacl.x φ X K
9 mhpvscacl.f φ F H N
10 2 mpllmod I V R Ring P LMod
11 5 6 10 syl2anc φ P LMod
12 8 4 eleqtrdi φ X Base R
13 2 5 6 mplsca φ R = Scalar P
14 13 fveq2d φ Base R = Base Scalar P
15 12 14 eleqtrd φ X Base Scalar P
16 eqid Base P = Base P
17 1 2 16 5 6 7 9 mhpmpl φ F Base P
18 eqid Scalar P = Scalar P
19 eqid Base Scalar P = Base Scalar P
20 16 18 3 19 lmodvscl P LMod X Base Scalar P F Base P X · ˙ F Base P
21 11 15 17 20 syl3anc φ X · ˙ F Base P
22 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
23 2 4 16 22 21 mplelf φ X · ˙ F : h 0 I | h -1 Fin K
24 eqid R = R
25 8 adantr φ k h 0 I | h -1 Fin supp 0 R F X K
26 17 adantr φ k h 0 I | h -1 Fin supp 0 R F F Base P
27 eldifi k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
28 27 adantl φ k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
29 2 3 4 16 24 22 25 26 28 mplvscaval φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = X R F k
30 2 4 16 22 17 mplelf φ F : h 0 I | h -1 Fin K
31 ssidd φ F supp 0 R F supp 0 R
32 ovexd φ 0 I V
33 22 32 rabexd φ h 0 I | h -1 Fin V
34 fvexd φ 0 R V
35 30 31 33 34 suppssr φ k h 0 I | h -1 Fin supp 0 R F F k = 0 R
36 35 oveq2d φ k h 0 I | h -1 Fin supp 0 R F X R F k = X R 0 R
37 eqid 0 R = 0 R
38 4 24 37 ringrz R Ring X K X R 0 R = 0 R
39 6 8 38 syl2anc φ X R 0 R = 0 R
40 39 adantr φ k h 0 I | h -1 Fin supp 0 R F X R 0 R = 0 R
41 29 36 40 3eqtrd φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = 0 R
42 23 41 suppss φ X · ˙ F supp 0 R F supp 0 R
43 1 37 22 5 6 7 9 mhpdeg φ F supp 0 R g h 0 I | h -1 Fin | j 0 g j = N
44 42 43 sstrd φ X · ˙ F supp 0 R g h 0 I | h -1 Fin | j 0 g j = N
45 1 2 16 37 22 5 6 7 ismhp φ X · ˙ F H N X · ˙ F Base P X · ˙ F supp 0 R g h 0 I | h -1 Fin | j 0 g j = N
46 21 44 45 mpbir2and φ X · ˙ F H N