Metamath Proof Explorer


Theorem mhpvscacl

Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023) Remove closure hypotheses. (Revised by SN, 4-Sep-2025)

Ref Expression
Hypotheses mhpvscacl.h H = I mHomP R
mhpvscacl.p P = I mPoly R
mhpvscacl.t · ˙ = P
mhpvscacl.k K = Base R
mhpvscacl.r φ R Ring
mhpvscacl.x φ X K
mhpvscacl.f φ F H N
Assertion mhpvscacl φ X · ˙ F H N

Proof

Step Hyp Ref Expression
1 mhpvscacl.h H = I mHomP R
2 mhpvscacl.p P = I mPoly R
3 mhpvscacl.t · ˙ = P
4 mhpvscacl.k K = Base R
5 mhpvscacl.r φ R Ring
6 mhpvscacl.x φ X K
7 mhpvscacl.f φ F H N
8 eqid Base P = Base P
9 eqid 0 R = 0 R
10 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
11 reldmmhp Rel dom mHomP
12 11 1 7 elfvov1 φ I V
13 1 7 mhprcl φ N 0
14 eqid Scalar P = Scalar P
15 eqid Base Scalar P = Base Scalar P
16 2 12 5 mpllmodd φ P LMod
17 6 4 eleqtrdi φ X Base R
18 2 12 5 mplsca φ R = Scalar P
19 18 fveq2d φ Base R = Base Scalar P
20 17 19 eleqtrd φ X Base Scalar P
21 1 2 8 7 mhpmpl φ F Base P
22 8 14 3 15 16 20 21 lmodvscld φ X · ˙ F Base P
23 2 4 8 10 22 mplelf φ X · ˙ F : h 0 I | h -1 Fin K
24 eqid R = R
25 6 adantr φ k h 0 I | h -1 Fin supp 0 R F X K
26 21 adantr φ k h 0 I | h -1 Fin supp 0 R F F Base P
27 eldifi k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
28 27 adantl φ k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
29 2 3 4 8 24 10 25 26 28 mplvscaval φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = X R F k
30 2 4 8 10 21 mplelf φ F : h 0 I | h -1 Fin K
31 ssidd φ F supp 0 R F supp 0 R
32 fvexd φ 0 R V
33 30 31 7 32 suppssrg φ k h 0 I | h -1 Fin supp 0 R F F k = 0 R
34 33 oveq2d φ k h 0 I | h -1 Fin supp 0 R F X R F k = X R 0 R
35 4 24 9 5 6 ringrzd φ X R 0 R = 0 R
36 35 adantr φ k h 0 I | h -1 Fin supp 0 R F X R 0 R = 0 R
37 29 34 36 3eqtrd φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = 0 R
38 23 37 suppss φ X · ˙ F supp 0 R F supp 0 R
39 1 9 10 7 mhpdeg φ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
40 38 39 sstrd φ X · ˙ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
41 1 2 8 9 10 12 5 13 22 40 ismhp2 φ X · ˙ F H N