Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | monoord2.1 | |
|
monoord2.2 | |
||
monoord2.3 | |
||
Assertion | monoord2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monoord2.1 | |
|
2 | monoord2.2 | |
|
3 | monoord2.3 | |
|
4 | 2 | renegcld | |
5 | 4 | fmpttd | |
6 | 5 | ffvelcdmda | |
7 | 3 | ralrimiva | |
8 | fvoveq1 | |
|
9 | fveq2 | |
|
10 | 8 9 | breq12d | |
11 | 10 | cbvralvw | |
12 | 7 11 | sylib | |
13 | 12 | r19.21bi | |
14 | fveq2 | |
|
15 | 14 | eleq1d | |
16 | 2 | ralrimiva | |
17 | 16 | adantr | |
18 | fzp1elp1 | |
|
19 | 18 | adantl | |
20 | eluzelz | |
|
21 | 1 20 | syl | |
22 | 21 | zcnd | |
23 | ax-1cn | |
|
24 | npcan | |
|
25 | 22 23 24 | sylancl | |
26 | 25 | oveq2d | |
27 | 26 | adantr | |
28 | 19 27 | eleqtrd | |
29 | 15 17 28 | rspcdva | |
30 | 9 | eleq1d | |
31 | fzssp1 | |
|
32 | 31 26 | sseqtrid | |
33 | 32 | sselda | |
34 | 30 17 33 | rspcdva | |
35 | 29 34 | lenegd | |
36 | 13 35 | mpbid | |
37 | 9 | negeqd | |
38 | eqid | |
|
39 | negex | |
|
40 | 37 38 39 | fvmpt | |
41 | 33 40 | syl | |
42 | 14 | negeqd | |
43 | negex | |
|
44 | 42 38 43 | fvmpt | |
45 | 28 44 | syl | |
46 | 36 41 45 | 3brtr4d | |
47 | 1 6 46 | monoord | |
48 | eluzfz1 | |
|
49 | 1 48 | syl | |
50 | fveq2 | |
|
51 | 50 | negeqd | |
52 | negex | |
|
53 | 51 38 52 | fvmpt | |
54 | 49 53 | syl | |
55 | eluzfz2 | |
|
56 | 1 55 | syl | |
57 | fveq2 | |
|
58 | 57 | negeqd | |
59 | negex | |
|
60 | 58 38 59 | fvmpt | |
61 | 56 60 | syl | |
62 | 47 54 61 | 3brtr3d | |
63 | 57 | eleq1d | |
64 | 63 16 56 | rspcdva | |
65 | 50 | eleq1d | |
66 | 65 16 49 | rspcdva | |
67 | 64 66 | lenegd | |
68 | 62 67 | mpbird | |