Metamath Proof Explorer


Theorem monoord2

Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Hypotheses monoord2.1 φNM
monoord2.2 φkMNFk
monoord2.3 φkMN1Fk+1Fk
Assertion monoord2 φFNFM

Proof

Step Hyp Ref Expression
1 monoord2.1 φNM
2 monoord2.2 φkMNFk
3 monoord2.3 φkMN1Fk+1Fk
4 2 renegcld φkMNFk
5 4 fmpttd φkMNFk:MN
6 5 ffvelcdmda φnMNkMNFkn
7 3 ralrimiva φkMN1Fk+1Fk
8 fvoveq1 k=nFk+1=Fn+1
9 fveq2 k=nFk=Fn
10 8 9 breq12d k=nFk+1FkFn+1Fn
11 10 cbvralvw kMN1Fk+1FknMN1Fn+1Fn
12 7 11 sylib φnMN1Fn+1Fn
13 12 r19.21bi φnMN1Fn+1Fn
14 fveq2 k=n+1Fk=Fn+1
15 14 eleq1d k=n+1FkFn+1
16 2 ralrimiva φkMNFk
17 16 adantr φnMN1kMNFk
18 fzp1elp1 nMN1n+1MN-1+1
19 18 adantl φnMN1n+1MN-1+1
20 eluzelz NMN
21 1 20 syl φN
22 21 zcnd φN
23 ax-1cn 1
24 npcan N1N-1+1=N
25 22 23 24 sylancl φN-1+1=N
26 25 oveq2d φMN-1+1=MN
27 26 adantr φnMN1MN-1+1=MN
28 19 27 eleqtrd φnMN1n+1MN
29 15 17 28 rspcdva φnMN1Fn+1
30 9 eleq1d k=nFkFn
31 fzssp1 MN1MN-1+1
32 31 26 sseqtrid φMN1MN
33 32 sselda φnMN1nMN
34 30 17 33 rspcdva φnMN1Fn
35 29 34 lenegd φnMN1Fn+1FnFnFn+1
36 13 35 mpbid φnMN1FnFn+1
37 9 negeqd k=nFk=Fn
38 eqid kMNFk=kMNFk
39 negex FnV
40 37 38 39 fvmpt nMNkMNFkn=Fn
41 33 40 syl φnMN1kMNFkn=Fn
42 14 negeqd k=n+1Fk=Fn+1
43 negex Fn+1V
44 42 38 43 fvmpt n+1MNkMNFkn+1=Fn+1
45 28 44 syl φnMN1kMNFkn+1=Fn+1
46 36 41 45 3brtr4d φnMN1kMNFknkMNFkn+1
47 1 6 46 monoord φkMNFkMkMNFkN
48 eluzfz1 NMMMN
49 1 48 syl φMMN
50 fveq2 k=MFk=FM
51 50 negeqd k=MFk=FM
52 negex FMV
53 51 38 52 fvmpt MMNkMNFkM=FM
54 49 53 syl φkMNFkM=FM
55 eluzfz2 NMNMN
56 1 55 syl φNMN
57 fveq2 k=NFk=FN
58 57 negeqd k=NFk=FN
59 negex FNV
60 58 38 59 fvmpt NMNkMNFkN=FN
61 56 60 syl φkMNFkN=FN
62 47 54 61 3brtr3d φFMFN
63 57 eleq1d k=NFkFN
64 63 16 56 rspcdva φFN
65 50 eleq1d k=MFkFM
66 65 16 49 rspcdva φFM
67 64 66 lenegd φFNFMFMFN
68 62 67 mpbird φFNFM