Metamath Proof Explorer


Theorem mptscmfsupp0

Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019)

Ref Expression
Hypotheses mptscmfsupp0.d φDV
mptscmfsupp0.q φQLMod
mptscmfsupp0.r φR=ScalarQ
mptscmfsupp0.k K=BaseQ
mptscmfsupp0.s φkDSB
mptscmfsupp0.w φkDWK
mptscmfsupp0.0 0˙=0Q
mptscmfsupp0.z Z=0R
mptscmfsupp0.m ˙=Q
mptscmfsupp0.f φfinSuppZkDS
Assertion mptscmfsupp0 φfinSupp0˙kDS˙W

Proof

Step Hyp Ref Expression
1 mptscmfsupp0.d φDV
2 mptscmfsupp0.q φQLMod
3 mptscmfsupp0.r φR=ScalarQ
4 mptscmfsupp0.k K=BaseQ
5 mptscmfsupp0.s φkDSB
6 mptscmfsupp0.w φkDWK
7 mptscmfsupp0.0 0˙=0Q
8 mptscmfsupp0.z Z=0R
9 mptscmfsupp0.m ˙=Q
10 mptscmfsupp0.f φfinSuppZkDS
11 1 mptexd φkDS˙WV
12 funmpt FunkDS˙W
13 12 a1i φFunkDS˙W
14 7 fvexi 0˙V
15 14 a1i φ0˙V
16 10 fsuppimpd φkDSsuppZFin
17 simpr φdDdD
18 5 ralrimiva φkDSB
19 18 adantr φdDkDSB
20 rspcsbela dDkDSBd/kSB
21 17 19 20 syl2anc φdDd/kSB
22 eqid kDS=kDS
23 22 fvmpts dDd/kSBkDSd=d/kS
24 17 21 23 syl2anc φdDkDSd=d/kS
25 24 eqeq1d φdDkDSd=Zd/kS=Z
26 oveq1 d/kS=Zd/kS˙d/kW=Z˙d/kW
27 3 adantr φdDR=ScalarQ
28 27 fveq2d φdD0R=0ScalarQ
29 8 28 eqtrid φdDZ=0ScalarQ
30 29 oveq1d φdDZ˙d/kW=0ScalarQ˙d/kW
31 2 adantr φdDQLMod
32 6 ralrimiva φkDWK
33 32 adantr φdDkDWK
34 rspcsbela dDkDWKd/kWK
35 17 33 34 syl2anc φdDd/kWK
36 eqid ScalarQ=ScalarQ
37 eqid 0ScalarQ=0ScalarQ
38 4 36 9 37 7 lmod0vs QLModd/kWK0ScalarQ˙d/kW=0˙
39 31 35 38 syl2anc φdD0ScalarQ˙d/kW=0˙
40 30 39 eqtrd φdDZ˙d/kW=0˙
41 26 40 sylan9eqr φdDd/kS=Zd/kS˙d/kW=0˙
42 csbov12g dDd/kS˙W=d/kS˙d/kW
43 42 adantl φdDd/kS˙W=d/kS˙d/kW
44 ovex d/kS˙d/kWV
45 43 44 eqeltrdi φdDd/kS˙WV
46 eqid kDS˙W=kDS˙W
47 46 fvmpts dDd/kS˙WVkDS˙Wd=d/kS˙W
48 17 45 47 syl2anc φdDkDS˙Wd=d/kS˙W
49 48 43 eqtrd φdDkDS˙Wd=d/kS˙d/kW
50 49 eqeq1d φdDkDS˙Wd=0˙d/kS˙d/kW=0˙
51 50 adantr φdDd/kS=ZkDS˙Wd=0˙d/kS˙d/kW=0˙
52 41 51 mpbird φdDd/kS=ZkDS˙Wd=0˙
53 52 ex φdDd/kS=ZkDS˙Wd=0˙
54 25 53 sylbid φdDkDSd=ZkDS˙Wd=0˙
55 54 necon3d φdDkDS˙Wd0˙kDSdZ
56 55 ss2rabdv φdD|kDS˙Wd0˙dD|kDSdZ
57 ovex S˙WV
58 57 rgenw kDS˙WV
59 46 fnmpt kDS˙WVkDS˙WFnD
60 58 59 mp1i φkDS˙WFnD
61 suppvalfn kDS˙WFnDDV0˙VkDS˙Wsupp0˙=dD|kDS˙Wd0˙
62 60 1 15 61 syl3anc φkDS˙Wsupp0˙=dD|kDS˙Wd0˙
63 22 fnmpt kDSBkDSFnD
64 18 63 syl φkDSFnD
65 8 fvexi ZV
66 65 a1i φZV
67 suppvalfn kDSFnDDVZVkDSsuppZ=dD|kDSdZ
68 64 1 66 67 syl3anc φkDSsuppZ=dD|kDSdZ
69 56 62 68 3sstr4d φkDS˙Wsupp0˙kDSsuppZ
70 suppssfifsupp kDS˙WVFunkDS˙W0˙VkDSsuppZFinkDS˙Wsupp0˙kDSsuppZfinSupp0˙kDS˙W
71 11 13 15 16 69 70 syl32anc φfinSupp0˙kDS˙W