Metamath Proof Explorer


Theorem msubrn

Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff.v V=mVRT
msubff.r R=mRExT
msubff.s S=mSubstT
Assertion msubrn ranS=SRV

Proof

Step Hyp Ref Expression
1 msubff.v V=mVRT
2 msubff.r R=mRExT
3 msubff.s S=mSubstT
4 eqid mExT=mExT
5 eqid mRSubstT=mRSubstT
6 1 2 3 4 5 msubffval TVS=fR𝑝𝑚VemExT1stemRSubstTf2nde
7 6 rneqd TVranS=ranfR𝑝𝑚VemExT1stemRSubstTf2nde
8 1 2 5 mrsubff TVmRSubstT:R𝑝𝑚VRR
9 8 adantr TVfR𝑝𝑚VmRSubstT:R𝑝𝑚VRR
10 9 ffund TVfR𝑝𝑚VFunmRSubstT
11 8 ffnd TVmRSubstTFnR𝑝𝑚V
12 fnfvelrn mRSubstTFnR𝑝𝑚VfR𝑝𝑚VmRSubstTfranmRSubstT
13 11 12 sylan TVfR𝑝𝑚VmRSubstTfranmRSubstT
14 1 2 5 mrsubrn ranmRSubstT=mRSubstTRV
15 13 14 eleqtrdi TVfR𝑝𝑚VmRSubstTfmRSubstTRV
16 fvelima FunmRSubstTmRSubstTfmRSubstTRVgRVmRSubstTg=mRSubstTf
17 10 15 16 syl2anc TVfR𝑝𝑚VgRVmRSubstTg=mRSubstTf
18 elmapi gRVg:VR
19 18 adantl TVgRVg:VR
20 ssid VV
21 1 2 3 4 5 msubfval g:VRVVSg=emExT1stemRSubstTg2nde
22 19 20 21 sylancl TVgRVSg=emExT1stemRSubstTg2nde
23 fvex mExTV
24 23 mptex emExT1stemRSubstTf2ndeV
25 eqid fR𝑝𝑚VemExT1stemRSubstTf2nde=fR𝑝𝑚VemExT1stemRSubstTf2nde
26 24 25 fnmpti fR𝑝𝑚VemExT1stemRSubstTf2ndeFnR𝑝𝑚V
27 6 fneq1d TVSFnR𝑝𝑚VfR𝑝𝑚VemExT1stemRSubstTf2ndeFnR𝑝𝑚V
28 26 27 mpbiri TVSFnR𝑝𝑚V
29 28 adantr TVgRVSFnR𝑝𝑚V
30 mapsspm RVR𝑝𝑚V
31 30 a1i TVgRVRVR𝑝𝑚V
32 simpr TVgRVgRV
33 fnfvima SFnR𝑝𝑚VRVR𝑝𝑚VgRVSgSRV
34 29 31 32 33 syl3anc TVgRVSgSRV
35 22 34 eqeltrrd TVgRVemExT1stemRSubstTg2ndeSRV
36 35 adantlr TVfR𝑝𝑚VgRVemExT1stemRSubstTg2ndeSRV
37 fveq1 mRSubstTg=mRSubstTfmRSubstTg2nde=mRSubstTf2nde
38 37 opeq2d mRSubstTg=mRSubstTf1stemRSubstTg2nde=1stemRSubstTf2nde
39 38 mpteq2dv mRSubstTg=mRSubstTfemExT1stemRSubstTg2nde=emExT1stemRSubstTf2nde
40 39 eleq1d mRSubstTg=mRSubstTfemExT1stemRSubstTg2ndeSRVemExT1stemRSubstTf2ndeSRV
41 36 40 syl5ibcom TVfR𝑝𝑚VgRVmRSubstTg=mRSubstTfemExT1stemRSubstTf2ndeSRV
42 41 rexlimdva TVfR𝑝𝑚VgRVmRSubstTg=mRSubstTfemExT1stemRSubstTf2ndeSRV
43 17 42 mpd TVfR𝑝𝑚VemExT1stemRSubstTf2ndeSRV
44 43 fmpttd TVfR𝑝𝑚VemExT1stemRSubstTf2nde:R𝑝𝑚VSRV
45 44 frnd TVranfR𝑝𝑚VemExT1stemRSubstTf2ndeSRV
46 7 45 eqsstrd TVranSSRV
47 3 rnfvprc ¬TVranS=
48 0ss SRV
49 47 48 eqsstrdi ¬TVranSSRV
50 46 49 pm2.61i ranSSRV
51 imassrn SRVranS
52 50 51 eqssi ranS=SRV