Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | msubff.v | |
|
msubff.r | |
||
msubff.s | |
||
Assertion | msubrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubff.v | |
|
2 | msubff.r | |
|
3 | msubff.s | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | msubffval | |
7 | 6 | rneqd | |
8 | 1 2 5 | mrsubff | |
9 | 8 | adantr | |
10 | 9 | ffund | |
11 | 8 | ffnd | |
12 | fnfvelrn | |
|
13 | 11 12 | sylan | |
14 | 1 2 5 | mrsubrn | |
15 | 13 14 | eleqtrdi | |
16 | fvelima | |
|
17 | 10 15 16 | syl2anc | |
18 | elmapi | |
|
19 | 18 | adantl | |
20 | ssid | |
|
21 | 1 2 3 4 5 | msubfval | |
22 | 19 20 21 | sylancl | |
23 | fvex | |
|
24 | 23 | mptex | |
25 | eqid | |
|
26 | 24 25 | fnmpti | |
27 | 6 | fneq1d | |
28 | 26 27 | mpbiri | |
29 | 28 | adantr | |
30 | mapsspm | |
|
31 | 30 | a1i | |
32 | simpr | |
|
33 | fnfvima | |
|
34 | 29 31 32 33 | syl3anc | |
35 | 22 34 | eqeltrrd | |
36 | 35 | adantlr | |
37 | fveq1 | |
|
38 | 37 | opeq2d | |
39 | 38 | mpteq2dv | |
40 | 39 | eleq1d | |
41 | 36 40 | syl5ibcom | |
42 | 41 | rexlimdva | |
43 | 17 42 | mpd | |
44 | 43 | fmpttd | |
45 | 44 | frnd | |
46 | 7 45 | eqsstrd | |
47 | 3 | rnfvprc | |
48 | 0ss | |
|
49 | 47 48 | eqsstrdi | |
50 | 46 49 | pm2.61i | |
51 | imassrn | |
|
52 | 50 51 | eqssi | |