Metamath Proof Explorer


Theorem mulgnn0di

Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgdi.b B=BaseG
mulgdi.m ·˙=G
mulgdi.p +˙=+G
Assertion mulgnn0di GCMndM0XBYBM·˙X+˙Y=M·˙X+˙M·˙Y

Proof

Step Hyp Ref Expression
1 mulgdi.b B=BaseG
2 mulgdi.m ·˙=G
3 mulgdi.p +˙=+G
4 cmnmnd GCMndGMnd
5 4 ad2antrr GCMndM0XBYBMGMnd
6 1 3 mndcl GMndxByBx+˙yB
7 6 3expb GMndxByBx+˙yB
8 5 7 sylan GCMndM0XBYBMxByBx+˙yB
9 1 3 cmncom GCMndxByBx+˙y=y+˙x
10 9 3expb GCMndxByBx+˙y=y+˙x
11 10 ad4ant14 GCMndM0XBYBMxByBx+˙y=y+˙x
12 1 3 mndass GMndxByBzBx+˙y+˙z=x+˙y+˙z
13 5 12 sylan GCMndM0XBYBMxByBzBx+˙y+˙z=x+˙y+˙z
14 simpr GCMndM0XBYBMM
15 nnuz =1
16 14 15 eleqtrdi GCMndM0XBYBMM1
17 simplr2 GCMndM0XBYBMXB
18 elfznn k1Mk
19 fvconst2g XBk×Xk=X
20 17 18 19 syl2an GCMndM0XBYBMk1M×Xk=X
21 17 adantr GCMndM0XBYBMk1MXB
22 20 21 eqeltrd GCMndM0XBYBMk1M×XkB
23 simplr3 GCMndM0XBYBMYB
24 fvconst2g YBk×Yk=Y
25 23 18 24 syl2an GCMndM0XBYBMk1M×Yk=Y
26 23 adantr GCMndM0XBYBMk1MYB
27 25 26 eqeltrd GCMndM0XBYBMk1M×YkB
28 1 3 mndcl GMndXBYBX+˙YB
29 5 17 23 28 syl3anc GCMndM0XBYBMX+˙YB
30 fvconst2g X+˙YBk×X+˙Yk=X+˙Y
31 29 18 30 syl2an GCMndM0XBYBMk1M×X+˙Yk=X+˙Y
32 20 25 oveq12d GCMndM0XBYBMk1M×Xk+˙×Yk=X+˙Y
33 31 32 eqtr4d GCMndM0XBYBMk1M×X+˙Yk=×Xk+˙×Yk
34 8 11 13 16 22 27 33 seqcaopr GCMndM0XBYBMseq1+˙×X+˙YM=seq1+˙×XM+˙seq1+˙×YM
35 eqid seq1+˙×X+˙Y=seq1+˙×X+˙Y
36 1 3 2 35 mulgnn MX+˙YBM·˙X+˙Y=seq1+˙×X+˙YM
37 14 29 36 syl2anc GCMndM0XBYBMM·˙X+˙Y=seq1+˙×X+˙YM
38 eqid seq1+˙×X=seq1+˙×X
39 1 3 2 38 mulgnn MXBM·˙X=seq1+˙×XM
40 14 17 39 syl2anc GCMndM0XBYBMM·˙X=seq1+˙×XM
41 eqid seq1+˙×Y=seq1+˙×Y
42 1 3 2 41 mulgnn MYBM·˙Y=seq1+˙×YM
43 14 23 42 syl2anc GCMndM0XBYBMM·˙Y=seq1+˙×YM
44 40 43 oveq12d GCMndM0XBYBMM·˙X+˙M·˙Y=seq1+˙×XM+˙seq1+˙×YM
45 34 37 44 3eqtr4d GCMndM0XBYBMM·˙X+˙Y=M·˙X+˙M·˙Y
46 4 ad2antrr GCMndM0XBYBM=0GMnd
47 simplr2 GCMndM0XBYBM=0XB
48 simplr3 GCMndM0XBYBM=0YB
49 46 47 48 28 syl3anc GCMndM0XBYBM=0X+˙YB
50 eqid 0G=0G
51 1 50 2 mulg0 X+˙YB0·˙X+˙Y=0G
52 49 51 syl GCMndM0XBYBM=00·˙X+˙Y=0G
53 eqid BaseG=BaseG
54 53 50 mndidcl GMnd0GBaseG
55 53 3 50 mndlid GMnd0GBaseG0G+˙0G=0G
56 4 54 55 syl2anc2 GCMnd0G+˙0G=0G
57 56 ad2antrr GCMndM0XBYBM=00G+˙0G=0G
58 52 57 eqtr4d GCMndM0XBYBM=00·˙X+˙Y=0G+˙0G
59 simpr GCMndM0XBYBM=0M=0
60 59 oveq1d GCMndM0XBYBM=0M·˙X+˙Y=0·˙X+˙Y
61 59 oveq1d GCMndM0XBYBM=0M·˙X=0·˙X
62 1 50 2 mulg0 XB0·˙X=0G
63 47 62 syl GCMndM0XBYBM=00·˙X=0G
64 61 63 eqtrd GCMndM0XBYBM=0M·˙X=0G
65 59 oveq1d GCMndM0XBYBM=0M·˙Y=0·˙Y
66 1 50 2 mulg0 YB0·˙Y=0G
67 48 66 syl GCMndM0XBYBM=00·˙Y=0G
68 65 67 eqtrd GCMndM0XBYBM=0M·˙Y=0G
69 64 68 oveq12d GCMndM0XBYBM=0M·˙X+˙M·˙Y=0G+˙0G
70 58 60 69 3eqtr4d GCMndM0XBYBM=0M·˙X+˙Y=M·˙X+˙M·˙Y
71 simpr1 GCMndM0XBYBM0
72 elnn0 M0MM=0
73 71 72 sylib GCMndM0XBYBMM=0
74 45 70 73 mpjaodan GCMndM0XBYBM·˙X+˙Y=M·˙X+˙M·˙Y