Description: Two structures with the same group-nature have the same group multiple function. K is expected to either be _V (when strong equality is available) or B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgpropd.m | |
|
mulgpropd.n | |
||
mulgpropd.b1 | |
||
mulgpropd.b2 | |
||
mulgpropd.i | |
||
mulgpropd.k | |
||
mulgpropd.e | |
||
Assertion | mulgpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgpropd.m | |
|
2 | mulgpropd.n | |
|
3 | mulgpropd.b1 | |
|
4 | mulgpropd.b2 | |
|
5 | mulgpropd.i | |
|
6 | mulgpropd.k | |
|
7 | mulgpropd.e | |
|
8 | ssel | |
|
9 | ssel | |
|
10 | 8 9 | anim12d | |
11 | 5 10 | syl | |
12 | 11 | imp | |
13 | 12 7 | syldan | |
14 | 3 4 13 | grpidpropd | |
15 | 14 | 3ad2ant1 | |
16 | 1zzd | |
|
17 | vex | |
|
18 | 17 | fvconst2 | |
19 | nnuz | |
|
20 | 19 | eqcomi | |
21 | 18 20 | eleq2s | |
22 | 21 | adantl | |
23 | 5 | 3ad2ant1 | |
24 | simp3 | |
|
25 | 23 24 | sseldd | |
26 | 25 | adantr | |
27 | 22 26 | eqeltrd | |
28 | 6 | 3ad2antl1 | |
29 | 7 | 3ad2antl1 | |
30 | 16 27 28 29 | seqfeq3 | |
31 | 30 | fveq1d | |
32 | 3 4 13 | grpinvpropd | |
33 | 32 | 3ad2ant1 | |
34 | 30 | fveq1d | |
35 | 33 34 | fveq12d | |
36 | 31 35 | ifeq12d | |
37 | 15 36 | ifeq12d | |
38 | 37 | mpoeq3dva | |
39 | eqidd | |
|
40 | eqidd | |
|
41 | 39 3 40 | mpoeq123dv | |
42 | eqidd | |
|
43 | 39 4 42 | mpoeq123dv | |
44 | 38 41 43 | 3eqtr3d | |
45 | eqid | |
|
46 | eqid | |
|
47 | eqid | |
|
48 | eqid | |
|
49 | 45 46 47 48 1 | mulgfval | |
50 | eqid | |
|
51 | eqid | |
|
52 | eqid | |
|
53 | eqid | |
|
54 | 50 51 52 53 2 | mulgfval | |
55 | 44 49 54 | 3eqtr4g | |