Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgghm2.m | |
|
mulgghm2.f | |
||
mulgrhm.1 | |
||
Assertion | mulgrhm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgghm2.m | |
|
2 | mulgghm2.f | |
|
3 | mulgrhm.1 | |
|
4 | zringbas | |
|
5 | eqid | |
|
6 | 4 5 | rhmf | |
7 | 6 | adantl | |
8 | 7 | feqmptd | |
9 | rhmghm | |
|
10 | 9 | ad2antlr | |
11 | simpr | |
|
12 | 1zzd | |
|
13 | eqid | |
|
14 | 4 13 1 | ghmmulg | |
15 | 10 11 12 14 | syl3anc | |
16 | ax-1cn | |
|
17 | cnfldmulg | |
|
18 | 16 17 | mpan2 | |
19 | 1z | |
|
20 | 18 | adantr | |
21 | zringmulg | |
|
22 | 20 21 | eqtr4d | |
23 | 19 22 | mpan2 | |
24 | zcn | |
|
25 | 24 | mulridd | |
26 | 18 23 25 | 3eqtr3d | |
27 | 26 | adantl | |
28 | 27 | fveq2d | |
29 | zring1 | |
|
30 | 29 3 | rhm1 | |
31 | 30 | ad2antlr | |
32 | 31 | oveq2d | |
33 | 15 28 32 | 3eqtr3d | |
34 | 33 | mpteq2dva | |
35 | 8 34 | eqtrd | |
36 | 35 2 | eqtr4di | |
37 | velsn | |
|
38 | 36 37 | sylibr | |
39 | 38 | ex | |
40 | 39 | ssrdv | |
41 | 1 2 3 | mulgrhm | |
42 | 41 | snssd | |
43 | 40 42 | eqssd | |