Metamath Proof Explorer


Theorem mulgrhm2

Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses mulgghm2.m ·˙=R
mulgghm2.f F=nn·˙1˙
mulgrhm.1 1˙=1R
Assertion mulgrhm2 RRingringRingHomR=F

Proof

Step Hyp Ref Expression
1 mulgghm2.m ·˙=R
2 mulgghm2.f F=nn·˙1˙
3 mulgrhm.1 1˙=1R
4 zringbas =Basering
5 eqid BaseR=BaseR
6 4 5 rhmf fringRingHomRf:BaseR
7 6 adantl RRingfringRingHomRf:BaseR
8 7 feqmptd RRingfringRingHomRf=nfn
9 rhmghm fringRingHomRfringGrpHomR
10 9 ad2antlr RRingfringRingHomRnfringGrpHomR
11 simpr RRingfringRingHomRnn
12 1zzd RRingfringRingHomRn1
13 eqid ring=ring
14 4 13 1 ghmmulg fringGrpHomRn1fnring1=n·˙f1
15 10 11 12 14 syl3anc RRingfringRingHomRnfnring1=n·˙f1
16 ax-1cn 1
17 cnfldmulg n1nfld1=n1
18 16 17 mpan2 nnfld1=n1
19 1z 1
20 18 adantr n1nfld1=n1
21 zringmulg n1nring1=n1
22 20 21 eqtr4d n1nfld1=nring1
23 19 22 mpan2 nnfld1=nring1
24 zcn nn
25 24 mulridd nn1=n
26 18 23 25 3eqtr3d nnring1=n
27 26 adantl RRingfringRingHomRnnring1=n
28 27 fveq2d RRingfringRingHomRnfnring1=fn
29 zring1 1=1ring
30 29 3 rhm1 fringRingHomRf1=1˙
31 30 ad2antlr RRingfringRingHomRnf1=1˙
32 31 oveq2d RRingfringRingHomRnn·˙f1=n·˙1˙
33 15 28 32 3eqtr3d RRingfringRingHomRnfn=n·˙1˙
34 33 mpteq2dva RRingfringRingHomRnfn=nn·˙1˙
35 8 34 eqtrd RRingfringRingHomRf=nn·˙1˙
36 35 2 eqtr4di RRingfringRingHomRf=F
37 velsn fFf=F
38 36 37 sylibr RRingfringRingHomRfF
39 38 ex RRingfringRingHomRfF
40 39 ssrdv RRingringRingHomRF
41 1 2 3 mulgrhm RRingFringRingHomR
42 41 snssd RRingFringRingHomR
43 40 42 eqssd RRingringRingHomR=F