Metamath Proof Explorer


Theorem mulmarep1gsum1

Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
ma1repvcl.1 1˙=1A
mulmarep1el.0 0˙=0R
mulmarep1el.e E=1˙NmatRepVRCK
Assertion mulmarep1gsum1 RRingXBCVKNINJNJKRlNIXlRlEJ=IXJ

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 ma1repvcl.1 1˙=1A
5 mulmarep1el.0 0˙=0R
6 mulmarep1el.e E=1˙NmatRepVRCK
7 simp1 RRingXBCVKNINJNJKRRing
8 7 adantr RRingXBCVKNINJNJKlNRRing
9 simp2 RRingXBCVKNINJNJKXBCVKN
10 9 adantr RRingXBCVKNINJNJKlNXBCVKN
11 simp1 INJNJKIN
12 11 3ad2ant3 RRingXBCVKNINJNJKIN
13 12 adantr RRingXBCVKNINJNJKlNIN
14 simp2 INJNJKJN
15 14 3ad2ant3 RRingXBCVKNINJNJKJN
16 15 adantr RRingXBCVKNINJNJKlNJN
17 simpr RRingXBCVKNINJNJKlNlN
18 1 2 3 4 5 6 mulmarep1el RRingXBCVKNINJNlNIXlRlEJ=ifJ=KIXlRClifJ=lIXl0˙
19 8 10 13 16 17 18 syl113anc RRingXBCVKNINJNJKlNIXlRlEJ=ifJ=KIXlRClifJ=lIXl0˙
20 19 mpteq2dva RRingXBCVKNINJNJKlNIXlRlEJ=lNifJ=KIXlRClifJ=lIXl0˙
21 20 oveq2d RRingXBCVKNINJNJKRlNIXlRlEJ=RlNifJ=KIXlRClifJ=lIXl0˙
22 neneq JK¬J=K
23 22 3ad2ant3 INJNJK¬J=K
24 23 3ad2ant3 RRingXBCVKNINJNJK¬J=K
25 24 iffalsed RRingXBCVKNINJNJKifJ=KIXlRClifJ=lIXl0˙=ifJ=lIXl0˙
26 25 mpteq2dv RRingXBCVKNINJNJKlNifJ=KIXlRClifJ=lIXl0˙=lNifJ=lIXl0˙
27 26 oveq2d RRingXBCVKNINJNJKRlNifJ=KIXlRClifJ=lIXl0˙=RlNifJ=lIXl0˙
28 ringmnd RRingRMnd
29 28 3ad2ant1 RRingXBCVKNINJNJKRMnd
30 1 2 matrcl XBNFinRV
31 30 simpld XBNFin
32 31 3ad2ant1 XBCVKNNFin
33 32 3ad2ant2 RRingXBCVKNINJNJKNFin
34 eqcom J=ll=J
35 ifbi J=ll=JifJ=lIXl0˙=ifl=JIXl0˙
36 oveq2 l=JIXl=IXJ
37 36 adantl J=ll=Jl=JIXl=IXJ
38 37 ifeq1da J=ll=Jifl=JIXl0˙=ifl=JIXJ0˙
39 35 38 eqtrd J=ll=JifJ=lIXl0˙=ifl=JIXJ0˙
40 34 39 ax-mp ifJ=lIXl0˙=ifl=JIXJ0˙
41 40 mpteq2i lNifJ=lIXl0˙=lNifl=JIXJ0˙
42 2 eleq2i XBXBaseA
43 42 biimpi XBXBaseA
44 43 3ad2ant1 XBCVKNXBaseA
45 44 3ad2ant2 RRingXBCVKNINJNJKXBaseA
46 eqid BaseR=BaseR
47 1 46 matecl INJNXBaseAIXJBaseR
48 12 15 45 47 syl3anc RRingXBCVKNINJNJKIXJBaseR
49 5 29 33 15 41 48 gsummptif1n0 RRingXBCVKNINJNJKRlNifJ=lIXl0˙=IXJ
50 21 27 49 3eqtrd RRingXBCVKNINJNJKRlNIXlRlEJ=IXJ