Metamath Proof Explorer


Theorem mulmarep1gsum2

Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
ma1repvcl.1 1 ˙ = 1 A
mulmarep1el.0 0 ˙ = 0 R
mulmarep1el.e E = 1 ˙ N matRepV R C K
mulmarep1gsum2.x × ˙ = R maVecMul N N
Assertion mulmarep1gsum2 R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = if J = K Z I I X J

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 ma1repvcl.1 1 ˙ = 1 A
5 mulmarep1el.0 0 ˙ = 0 R
6 mulmarep1el.e E = 1 ˙ N matRepV R C K
7 mulmarep1gsum2.x × ˙ = R maVecMul N N
8 simp1 R Ring X B C V K N I N J N X × ˙ C = Z R Ring
9 8 adantr R Ring X B C V K N I N J N X × ˙ C = Z l N R Ring
10 simpl2 R Ring X B C V K N I N J N X × ˙ C = Z l N X B C V K N
11 simp1 I N J N X × ˙ C = Z I N
12 11 3ad2ant3 R Ring X B C V K N I N J N X × ˙ C = Z I N
13 12 adantr R Ring X B C V K N I N J N X × ˙ C = Z l N I N
14 simpl32 R Ring X B C V K N I N J N X × ˙ C = Z l N J N
15 simpr R Ring X B C V K N I N J N X × ˙ C = Z l N l N
16 13 14 15 3jca R Ring X B C V K N I N J N X × ˙ C = Z l N I N J N l N
17 9 10 16 3jca R Ring X B C V K N I N J N X × ˙ C = Z l N R Ring X B C V K N I N J N l N
18 17 adantll J = K R Ring X B C V K N I N J N X × ˙ C = Z l N R Ring X B C V K N I N J N l N
19 1 2 3 4 5 6 mulmarep1el R Ring X B C V K N I N J N l N I X l R l E J = if J = K I X l R C l if J = l I X l 0 ˙
20 18 19 syl J = K R Ring X B C V K N I N J N X × ˙ C = Z l N I X l R l E J = if J = K I X l R C l if J = l I X l 0 ˙
21 iftrue J = K if J = K I X l R C l if J = l I X l 0 ˙ = I X l R C l
22 21 adantr J = K R Ring X B C V K N I N J N X × ˙ C = Z if J = K I X l R C l if J = l I X l 0 ˙ = I X l R C l
23 22 adantr J = K R Ring X B C V K N I N J N X × ˙ C = Z l N if J = K I X l R C l if J = l I X l 0 ˙ = I X l R C l
24 20 23 eqtrd J = K R Ring X B C V K N I N J N X × ˙ C = Z l N I X l R l E J = I X l R C l
25 24 mpteq2dva J = K R Ring X B C V K N I N J N X × ˙ C = Z l N I X l R l E J = l N I X l R C l
26 25 oveq2d J = K R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = R l N I X l R C l
27 fveq1 X × ˙ C = Z X × ˙ C I = Z I
28 27 eqcomd X × ˙ C = Z Z I = X × ˙ C I
29 28 3ad2ant3 I N J N X × ˙ C = Z Z I = X × ˙ C I
30 29 3ad2ant3 R Ring X B C V K N I N J N X × ˙ C = Z Z I = X × ˙ C I
31 30 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z Z I = X × ˙ C I
32 eqid Base R = Base R
33 eqid R = R
34 8 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z R Ring
35 1 2 matrcl X B N Fin R V
36 35 simpld X B N Fin
37 36 3ad2ant1 X B C V K N N Fin
38 37 3ad2ant2 R Ring X B C V K N I N J N X × ˙ C = Z N Fin
39 38 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z N Fin
40 2 eleq2i X B X Base A
41 40 biimpi X B X Base A
42 41 3ad2ant1 X B C V K N X Base A
43 42 3ad2ant2 R Ring X B C V K N I N J N X × ˙ C = Z X Base A
44 43 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z X Base A
45 3 eleq2i C V C Base R N
46 45 biimpi C V C Base R N
47 46 3ad2ant2 X B C V K N C Base R N
48 47 3ad2ant2 R Ring X B C V K N I N J N X × ˙ C = Z C Base R N
49 48 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z C Base R N
50 12 adantl J = K R Ring X B C V K N I N J N X × ˙ C = Z I N
51 1 7 32 33 34 39 44 49 50 mavmulfv J = K R Ring X B C V K N I N J N X × ˙ C = Z X × ˙ C I = R l N I X l R C l
52 31 51 eqtrd J = K R Ring X B C V K N I N J N X × ˙ C = Z Z I = R l N I X l R C l
53 iftrue J = K if J = K Z I I X J = Z I
54 53 eqcomd J = K Z I = if J = K Z I I X J
55 54 adantr J = K R Ring X B C V K N I N J N X × ˙ C = Z Z I = if J = K Z I I X J
56 26 52 55 3eqtr2d J = K R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = if J = K Z I I X J
57 56 ex J = K R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = if J = K Z I I X J
58 8 adantr R Ring X B C V K N I N J N X × ˙ C = Z J K R Ring
59 simpl2 R Ring X B C V K N I N J N X × ˙ C = Z J K X B C V K N
60 12 adantr R Ring X B C V K N I N J N X × ˙ C = Z J K I N
61 simpl32 R Ring X B C V K N I N J N X × ˙ C = Z J K J N
62 simpr R Ring X B C V K N I N J N X × ˙ C = Z J K J K
63 1 2 3 4 5 6 mulmarep1gsum1 R Ring X B C V K N I N J N J K R l N I X l R l E J = I X J
64 58 59 60 61 62 63 syl113anc R Ring X B C V K N I N J N X × ˙ C = Z J K R l N I X l R l E J = I X J
65 df-ne J K ¬ J = K
66 iffalse ¬ J = K if J = K Z I I X J = I X J
67 66 eqcomd ¬ J = K I X J = if J = K Z I I X J
68 65 67 sylbi J K I X J = if J = K Z I I X J
69 68 adantl R Ring X B C V K N I N J N X × ˙ C = Z J K I X J = if J = K Z I I X J
70 64 69 eqtrd R Ring X B C V K N I N J N X × ˙ C = Z J K R l N I X l R l E J = if J = K Z I I X J
71 70 expcom J K R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = if J = K Z I I X J
72 57 71 pm2.61ine R Ring X B C V K N I N J N X × ˙ C = Z R l N I X l R l E J = if J = K Z I I X J