Metamath Proof Explorer


Theorem mulmarep1gsum2

Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
ma1repvcl.1 1˙=1A
mulmarep1el.0 0˙=0R
mulmarep1el.e E=1˙NmatRepVRCK
mulmarep1gsum2.x ×˙=RmaVecMulNN
Assertion mulmarep1gsum2 RRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=ifJ=KZIIXJ

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 ma1repvcl.1 1˙=1A
5 mulmarep1el.0 0˙=0R
6 mulmarep1el.e E=1˙NmatRepVRCK
7 mulmarep1gsum2.x ×˙=RmaVecMulNN
8 simp1 RRingXBCVKNINJNX×˙C=ZRRing
9 8 adantr RRingXBCVKNINJNX×˙C=ZlNRRing
10 simpl2 RRingXBCVKNINJNX×˙C=ZlNXBCVKN
11 simp1 INJNX×˙C=ZIN
12 11 3ad2ant3 RRingXBCVKNINJNX×˙C=ZIN
13 12 adantr RRingXBCVKNINJNX×˙C=ZlNIN
14 simpl32 RRingXBCVKNINJNX×˙C=ZlNJN
15 simpr RRingXBCVKNINJNX×˙C=ZlNlN
16 13 14 15 3jca RRingXBCVKNINJNX×˙C=ZlNINJNlN
17 9 10 16 3jca RRingXBCVKNINJNX×˙C=ZlNRRingXBCVKNINJNlN
18 17 adantll J=KRRingXBCVKNINJNX×˙C=ZlNRRingXBCVKNINJNlN
19 1 2 3 4 5 6 mulmarep1el RRingXBCVKNINJNlNIXlRlEJ=ifJ=KIXlRClifJ=lIXl0˙
20 18 19 syl J=KRRingXBCVKNINJNX×˙C=ZlNIXlRlEJ=ifJ=KIXlRClifJ=lIXl0˙
21 iftrue J=KifJ=KIXlRClifJ=lIXl0˙=IXlRCl
22 21 adantr J=KRRingXBCVKNINJNX×˙C=ZifJ=KIXlRClifJ=lIXl0˙=IXlRCl
23 22 adantr J=KRRingXBCVKNINJNX×˙C=ZlNifJ=KIXlRClifJ=lIXl0˙=IXlRCl
24 20 23 eqtrd J=KRRingXBCVKNINJNX×˙C=ZlNIXlRlEJ=IXlRCl
25 24 mpteq2dva J=KRRingXBCVKNINJNX×˙C=ZlNIXlRlEJ=lNIXlRCl
26 25 oveq2d J=KRRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=RlNIXlRCl
27 fveq1 X×˙C=ZX×˙CI=ZI
28 27 eqcomd X×˙C=ZZI=X×˙CI
29 28 3ad2ant3 INJNX×˙C=ZZI=X×˙CI
30 29 3ad2ant3 RRingXBCVKNINJNX×˙C=ZZI=X×˙CI
31 30 adantl J=KRRingXBCVKNINJNX×˙C=ZZI=X×˙CI
32 eqid BaseR=BaseR
33 eqid R=R
34 8 adantl J=KRRingXBCVKNINJNX×˙C=ZRRing
35 1 2 matrcl XBNFinRV
36 35 simpld XBNFin
37 36 3ad2ant1 XBCVKNNFin
38 37 3ad2ant2 RRingXBCVKNINJNX×˙C=ZNFin
39 38 adantl J=KRRingXBCVKNINJNX×˙C=ZNFin
40 2 eleq2i XBXBaseA
41 40 biimpi XBXBaseA
42 41 3ad2ant1 XBCVKNXBaseA
43 42 3ad2ant2 RRingXBCVKNINJNX×˙C=ZXBaseA
44 43 adantl J=KRRingXBCVKNINJNX×˙C=ZXBaseA
45 3 eleq2i CVCBaseRN
46 45 biimpi CVCBaseRN
47 46 3ad2ant2 XBCVKNCBaseRN
48 47 3ad2ant2 RRingXBCVKNINJNX×˙C=ZCBaseRN
49 48 adantl J=KRRingXBCVKNINJNX×˙C=ZCBaseRN
50 12 adantl J=KRRingXBCVKNINJNX×˙C=ZIN
51 1 7 32 33 34 39 44 49 50 mavmulfv J=KRRingXBCVKNINJNX×˙C=ZX×˙CI=RlNIXlRCl
52 31 51 eqtrd J=KRRingXBCVKNINJNX×˙C=ZZI=RlNIXlRCl
53 iftrue J=KifJ=KZIIXJ=ZI
54 53 eqcomd J=KZI=ifJ=KZIIXJ
55 54 adantr J=KRRingXBCVKNINJNX×˙C=ZZI=ifJ=KZIIXJ
56 26 52 55 3eqtr2d J=KRRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=ifJ=KZIIXJ
57 56 ex J=KRRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=ifJ=KZIIXJ
58 8 adantr RRingXBCVKNINJNX×˙C=ZJKRRing
59 simpl2 RRingXBCVKNINJNX×˙C=ZJKXBCVKN
60 12 adantr RRingXBCVKNINJNX×˙C=ZJKIN
61 simpl32 RRingXBCVKNINJNX×˙C=ZJKJN
62 simpr RRingXBCVKNINJNX×˙C=ZJKJK
63 1 2 3 4 5 6 mulmarep1gsum1 RRingXBCVKNINJNJKRlNIXlRlEJ=IXJ
64 58 59 60 61 62 63 syl113anc RRingXBCVKNINJNX×˙C=ZJKRlNIXlRlEJ=IXJ
65 df-ne JK¬J=K
66 iffalse ¬J=KifJ=KZIIXJ=IXJ
67 66 eqcomd ¬J=KIXJ=ifJ=KZIIXJ
68 65 67 sylbi JKIXJ=ifJ=KZIIXJ
69 68 adantl RRingXBCVKNINJNX×˙C=ZJKIXJ=ifJ=KZIIXJ
70 64 69 eqtrd RRingXBCVKNINJNX×˙C=ZJKRlNIXlRlEJ=ifJ=KZIIXJ
71 70 expcom JKRRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=ifJ=KZIIXJ
72 57 71 pm2.61ine RRingXBCVKNINJNX×˙C=ZRlNIXlRlEJ=ifJ=KZIIXJ