Metamath Proof Explorer


Theorem ncoprmlnprm

Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion ncoprmlnprm ABA<B1<AgcdBB

Proof

Step Hyp Ref Expression
1 ncoprmgcdgt1b ABi2iAiB1<AgcdB
2 1 bicomd AB1<AgcdBi2iAiB
3 2 3adant3 ABA<B1<AgcdBi2iAiB
4 simp1 ABA<BA
5 eluzelz i2i
6 4 5 anim12ci ABA<Bi2iA
7 dvdsle iAiAiA
8 6 7 syl ABA<Bi2iAiA
9 nnre AA
10 nnre BB
11 eluzelre i2i
12 9 10 11 3anim123i ABi2ABi
13 3anrot iABABi
14 12 13 sylibr ABi2iAB
15 lelttr iABiAA<Bi<B
16 14 15 syl ABi2iAA<Bi<B
17 16 expcomd ABi2A<BiAi<B
18 17 3exp ABi2A<BiAi<B
19 18 com34 ABA<Bi2iAi<B
20 19 3imp1 ABA<Bi2iAi<B
21 20 imp ABA<Bi2iAi<B
22 nnz BB
23 22 3ad2ant2 ABA<BB
24 23 5 anim12ci ABA<Bi2iB
25 24 adantr ABA<Bi2iAiB
26 zltlem1 iBi<BiB1
27 25 26 syl ABA<Bi2iAi<BiB1
28 21 27 mpbid ABA<Bi2iAiB1
29 28 ex ABA<Bi2iAiB1
30 8 29 syldc iAABA<Bi2iB1
31 30 adantr iAiBABA<Bi2iB1
32 31 impcom ABA<Bi2iAiBiB1
33 peano2zm BB1
34 22 33 syl BB1
35 34 3ad2ant2 ABA<BB1
36 35 anim1ci ABA<Bi2i2B1
37 36 adantr ABA<Bi2iAiBi2B1
38 elfz5 i2B1i2B1iB1
39 37 38 syl ABA<Bi2iAiBi2B1iB1
40 32 39 mpbird ABA<Bi2iAiBi2B1
41 breq1 j=ijBiB
42 41 adantl ABA<Bi2iAiBj=ijBiB
43 simprr ABA<Bi2iAiBiB
44 40 42 43 rspcedvd ABA<Bi2iAiBj2B1jB
45 rexnal j2B1¬¬jB¬j2B1¬jB
46 notnotb jB¬¬jB
47 46 bicomi ¬¬jBjB
48 47 rexbii j2B1¬¬jBj2B1jB
49 45 48 bitr3i ¬j2B1¬jBj2B1jB
50 44 49 sylibr ABA<Bi2iAiB¬j2B1¬jB
51 50 olcd ABA<Bi2iAiB¬B2¬j2B1¬jB
52 df-nel B¬B
53 ianor ¬B2j2B1¬jB¬B2¬j2B1¬jB
54 isprm3 BB2j2B1¬jB
55 53 54 xchnxbir ¬B¬B2¬j2B1¬jB
56 52 55 bitri B¬B2¬j2B1¬jB
57 51 56 sylibr ABA<Bi2iAiBB
58 57 rexlimdva2 ABA<Bi2iAiBB
59 3 58 sylbid ABA<B1<AgcdBB