Metamath Proof Explorer


Theorem nicomachus

Description: Nicomachus's Theorem. The sum of the odd numbers from N ^ 2 - N + 1 to N ^ 2 + N - 1 is N ^ 3 . Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem . (Contributed by SN, 21-Mar-2025)

Ref Expression
Assertion nicomachus N0k=1NN2N+2k-1=N3

Proof

Step Hyp Ref Expression
1 fzfid N01NFin
2 nn0cn N0N
3 2 adantr N0k1NN
4 3 sqcld N0k1NN2
5 4 3 subcld N0k1NN2N
6 2cnd N0k1N2
7 elfznn k1Nk
8 7 nncnd k1Nk
9 8 adantl N0k1Nk
10 6 9 mulcld N0k1N2k
11 1cnd N0k1N1
12 10 11 subcld N0k1N2k1
13 1 5 12 fsumadd N0k=1NN2N+2k-1=k=1NN2N+k=1N2k1
14 id N0N0
15 2 sqcld N0N2
16 15 2 subcld N0N2N
17 14 16 fz1sumconst N0k=1NN2N=NN2N
18 2 15 2 subdid N0NN2N=NN2 N N
19 df-3 3=2+1
20 19 oveq2i N3=N2+1
21 2nn0 20
22 21 a1i N020
23 2 22 expp1d N0N2+1=N2 N
24 20 23 eqtrid N0N3=N2 N
25 15 2 mulcomd N0N2 N=NN2
26 24 25 eqtr2d N0NN2=N3
27 2 sqvald N0N2= N N
28 27 eqcomd N0 N N=N2
29 26 28 oveq12d N0NN2 N N=N3N2
30 17 18 29 3eqtrd N0k=1NN2N=N3N2
31 oddnumth N0k=1N2k1=N2
32 30 31 oveq12d N0k=1NN2N+k=1N2k1=N3-N2+N2
33 3nn0 30
34 33 a1i N030
35 2 34 expcld N0N3
36 35 15 npcand N0N3-N2+N2=N3
37 13 32 36 3eqtrd N0k=1NN2N+2k-1=N3