Step |
Hyp |
Ref |
Expression |
1 |
|
nmcfnex.1 |
|
2 |
|
nmcfnex.2 |
|
3 |
|
ax-hv0cl |
|
4 |
|
1rp |
|
5 |
|
cnfnc |
|
6 |
2 3 4 5
|
mp3an |
|
7 |
|
hvsub0 |
|
8 |
7
|
fveq2d |
|
9 |
8
|
breq1d |
|
10 |
1
|
lnfn0i |
|
11 |
10
|
oveq2i |
|
12 |
1
|
lnfnfi |
|
13 |
12
|
ffvelrni |
|
14 |
13
|
subid1d |
|
15 |
11 14
|
eqtrid |
|
16 |
15
|
fveq2d |
|
17 |
16
|
breq1d |
|
18 |
9 17
|
imbi12d |
|
19 |
18
|
ralbiia |
|
20 |
19
|
rexbii |
|
21 |
6 20
|
mpbi |
|
22 |
|
nmfnval |
|
23 |
12 22
|
ax-mp |
|
24 |
12
|
ffvelrni |
|
25 |
24
|
abscld |
|
26 |
10
|
fveq2i |
|
27 |
|
abs0 |
|
28 |
26 27
|
eqtri |
|
29 |
|
rpcn |
|
30 |
1
|
lnfnmuli |
|
31 |
29 30
|
sylan |
|
32 |
31
|
fveq2d |
|
33 |
|
absmul |
|
34 |
29 24 33
|
syl2an |
|
35 |
|
rpre |
|
36 |
|
rpge0 |
|
37 |
35 36
|
absidd |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq1d |
|
40 |
32 34 39
|
3eqtrrd |
|
41 |
21 23 25 28 40
|
nmcexi |
|