Metamath Proof Explorer


Theorem nmcfnexi

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcfnex.1 T LinFn
nmcfnex.2 T ContFn
Assertion nmcfnexi norm fn T

Proof

Step Hyp Ref Expression
1 nmcfnex.1 T LinFn
2 nmcfnex.2 T ContFn
3 ax-hv0cl 0
4 1rp 1 +
5 cnfnc T ContFn 0 1 + y + z norm z - 0 < y T z T 0 < 1
6 2 3 4 5 mp3an y + z norm z - 0 < y T z T 0 < 1
7 hvsub0 z z - 0 = z
8 7 fveq2d z norm z - 0 = norm z
9 8 breq1d z norm z - 0 < y norm z < y
10 1 lnfn0i T 0 = 0
11 10 oveq2i T z T 0 = T z 0
12 1 lnfnfi T :
13 12 ffvelrni z T z
14 13 subid1d z T z 0 = T z
15 11 14 eqtrid z T z T 0 = T z
16 15 fveq2d z T z T 0 = T z
17 16 breq1d z T z T 0 < 1 T z < 1
18 9 17 imbi12d z norm z - 0 < y T z T 0 < 1 norm z < y T z < 1
19 18 ralbiia z norm z - 0 < y T z T 0 < 1 z norm z < y T z < 1
20 19 rexbii y + z norm z - 0 < y T z T 0 < 1 y + z norm z < y T z < 1
21 6 20 mpbi y + z norm z < y T z < 1
22 nmfnval T : norm fn T = sup m | x norm x 1 m = T x * <
23 12 22 ax-mp norm fn T = sup m | x norm x 1 m = T x * <
24 12 ffvelrni x T x
25 24 abscld x T x
26 10 fveq2i T 0 = 0
27 abs0 0 = 0
28 26 27 eqtri T 0 = 0
29 rpcn y 2 + y 2
30 1 lnfnmuli y 2 x T y 2 x = y 2 T x
31 29 30 sylan y 2 + x T y 2 x = y 2 T x
32 31 fveq2d y 2 + x T y 2 x = y 2 T x
33 absmul y 2 T x y 2 T x = y 2 T x
34 29 24 33 syl2an y 2 + x y 2 T x = y 2 T x
35 rpre y 2 + y 2
36 rpge0 y 2 + 0 y 2
37 35 36 absidd y 2 + y 2 = y 2
38 37 adantr y 2 + x y 2 = y 2
39 38 oveq1d y 2 + x y 2 T x = y 2 T x
40 32 34 39 3eqtrrd y 2 + x y 2 T x = T y 2 x
41 21 23 25 28 40 nmcexi norm fn T