Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmcfnex.1 | |
|
nmcfnex.2 | |
||
Assertion | nmcfnexi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex.1 | |
|
2 | nmcfnex.2 | |
|
3 | ax-hv0cl | |
|
4 | 1rp | |
|
5 | cnfnc | |
|
6 | 2 3 4 5 | mp3an | |
7 | hvsub0 | |
|
8 | 7 | fveq2d | |
9 | 8 | breq1d | |
10 | 1 | lnfn0i | |
11 | 10 | oveq2i | |
12 | 1 | lnfnfi | |
13 | 12 | ffvelcdmi | |
14 | 13 | subid1d | |
15 | 11 14 | eqtrid | |
16 | 15 | fveq2d | |
17 | 16 | breq1d | |
18 | 9 17 | imbi12d | |
19 | 18 | ralbiia | |
20 | 19 | rexbii | |
21 | 6 20 | mpbi | |
22 | nmfnval | |
|
23 | 12 22 | ax-mp | |
24 | 12 | ffvelcdmi | |
25 | 24 | abscld | |
26 | 10 | fveq2i | |
27 | abs0 | |
|
28 | 26 27 | eqtri | |
29 | rpcn | |
|
30 | 1 | lnfnmuli | |
31 | 29 30 | sylan | |
32 | 31 | fveq2d | |
33 | absmul | |
|
34 | 29 24 33 | syl2an | |
35 | rpre | |
|
36 | rpge0 | |
|
37 | 35 36 | absidd | |
38 | 37 | adantr | |
39 | 38 | oveq1d | |
40 | 32 34 39 | 3eqtrrd | |
41 | 21 23 25 28 40 | nmcexi | |