Metamath Proof Explorer


Theorem nmcfnexi

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcfnex.1 TLinFn
nmcfnex.2 TContFn
Assertion nmcfnexi normfnT

Proof

Step Hyp Ref Expression
1 nmcfnex.1 TLinFn
2 nmcfnex.2 TContFn
3 ax-hv0cl 0
4 1rp 1+
5 cnfnc TContFn01+y+znormz-0<yTzT0<1
6 2 3 4 5 mp3an y+znormz-0<yTzT0<1
7 hvsub0 zz-0=z
8 7 fveq2d znormz-0=normz
9 8 breq1d znormz-0<ynormz<y
10 1 lnfn0i T0=0
11 10 oveq2i TzT0=Tz0
12 1 lnfnfi T:
13 12 ffvelcdmi zTz
14 13 subid1d zTz0=Tz
15 11 14 eqtrid zTzT0=Tz
16 15 fveq2d zTzT0=Tz
17 16 breq1d zTzT0<1Tz<1
18 9 17 imbi12d znormz-0<yTzT0<1normz<yTz<1
19 18 ralbiia znormz-0<yTzT0<1znormz<yTz<1
20 19 rexbii y+znormz-0<yTzT0<1y+znormz<yTz<1
21 6 20 mpbi y+znormz<yTz<1
22 nmfnval T:normfnT=supm|xnormx1m=Tx*<
23 12 22 ax-mp normfnT=supm|xnormx1m=Tx*<
24 12 ffvelcdmi xTx
25 24 abscld xTx
26 10 fveq2i T0=0
27 abs0 0=0
28 26 27 eqtri T0=0
29 rpcn y2+y2
30 1 lnfnmuli y2xTy2x=y2Tx
31 29 30 sylan y2+xTy2x=y2Tx
32 31 fveq2d y2+xTy2x=y2Tx
33 absmul y2Txy2Tx=y2Tx
34 29 24 33 syl2an y2+xy2Tx=y2Tx
35 rpre y2+y2
36 rpge0 y2+0y2
37 35 36 absidd y2+y2=y2
38 37 adantr y2+xy2=y2
39 38 oveq1d y2+xy2Tx=y2Tx
40 32 34 39 3eqtrrd y2+xy2Tx=Ty2x
41 21 23 25 28 40 nmcexi normfnT