| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|
| 2 |
|
nmoi.2 |
|
| 3 |
|
nmoi.3 |
|
| 4 |
|
nmoi.4 |
|
| 5 |
|
nmoi2.z |
|
| 6 |
|
simpl2 |
|
| 7 |
|
simpl3 |
|
| 8 |
|
eqid |
|
| 9 |
2 8
|
ghmf |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
simprl |
|
| 12 |
10 11
|
ffvelcdmd |
|
| 13 |
8 4
|
nmcl |
|
| 14 |
6 12 13
|
syl2anc |
|
| 15 |
14
|
rexrd |
|
| 16 |
1
|
nmocl |
|
| 17 |
16
|
adantr |
|
| 18 |
2 3 5
|
nmrpcl |
|
| 19 |
18
|
3expb |
|
| 20 |
19
|
3ad2antl1 |
|
| 21 |
20
|
rpxrd |
|
| 22 |
17 21
|
xmulcld |
|
| 23 |
20
|
rpreccld |
|
| 24 |
23
|
rpxrd |
|
| 25 |
23
|
rpge0d |
|
| 26 |
24 25
|
jca |
|
| 27 |
1 2 3 4
|
nmoix |
|
| 28 |
27
|
adantrr |
|
| 29 |
|
xlemul1a |
|
| 30 |
15 22 26 28 29
|
syl31anc |
|
| 31 |
23
|
rpred |
|
| 32 |
|
rexmul |
|
| 33 |
14 31 32
|
syl2anc |
|
| 34 |
14
|
recnd |
|
| 35 |
20
|
rpcnd |
|
| 36 |
20
|
rpne0d |
|
| 37 |
34 35 36
|
divrecd |
|
| 38 |
33 37
|
eqtr4d |
|
| 39 |
|
xmulass |
|
| 40 |
17 21 24 39
|
syl3anc |
|
| 41 |
20
|
rpred |
|
| 42 |
|
rexmul |
|
| 43 |
41 31 42
|
syl2anc |
|
| 44 |
35 36
|
recidd |
|
| 45 |
43 44
|
eqtrd |
|
| 46 |
45
|
oveq2d |
|
| 47 |
|
xmulrid |
|
| 48 |
17 47
|
syl |
|
| 49 |
40 46 48
|
3eqtrd |
|
| 50 |
30 38 49
|
3brtr3d |
|