Metamath Proof Explorer


Theorem nn0srg

Description: The nonnegative integers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Assertion nn0srg fld𝑠0SRing

Proof

Step Hyp Ref Expression
1 cnring fldRing
2 ringcmn fldRingfldCMnd
3 1 2 ax-mp fldCMnd
4 nn0subm 0SubMndfld
5 eqid fld𝑠0=fld𝑠0
6 5 submcmn fldCMnd0SubMndfldfld𝑠0CMnd
7 3 4 6 mp2an fld𝑠0CMnd
8 nn0ex 0V
9 eqid mulGrpfld=mulGrpfld
10 5 9 mgpress fldCMnd0VmulGrpfld𝑠0=mulGrpfld𝑠0
11 3 8 10 mp2an mulGrpfld𝑠0=mulGrpfld𝑠0
12 nn0sscn 0
13 1nn0 10
14 nn0mulcl x0y0xy0
15 14 rgen2 x0y0xy0
16 9 ringmgp fldRingmulGrpfldMnd
17 1 16 ax-mp mulGrpfldMnd
18 cnfldbas =Basefld
19 9 18 mgpbas =BasemulGrpfld
20 cnfld1 1=1fld
21 9 20 ringidval 1=0mulGrpfld
22 cnfldmul ×=fld
23 9 22 mgpplusg ×=+mulGrpfld
24 19 21 23 issubm mulGrpfldMnd0SubMndmulGrpfld010x0y0xy0
25 17 24 ax-mp 0SubMndmulGrpfld010x0y0xy0
26 12 13 15 25 mpbir3an 0SubMndmulGrpfld
27 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
28 27 submmnd 0SubMndmulGrpfldmulGrpfld𝑠0Mnd
29 26 28 ax-mp mulGrpfld𝑠0Mnd
30 11 29 eqeltrri mulGrpfld𝑠0Mnd
31 simpl x0y0z0x0
32 31 nn0cnd x0y0z0x
33 simprl x0y0z0y0
34 33 nn0cnd x0y0z0y
35 simprr x0y0z0z0
36 35 nn0cnd x0y0z0z
37 32 34 36 adddid x0y0z0xy+z=xy+xz
38 32 34 36 adddird x0y0z0x+yz=xz+yz
39 37 38 jca x0y0z0xy+z=xy+xzx+yz=xz+yz
40 39 ralrimivva x0y0z0xy+z=xy+xzx+yz=xz+yz
41 nn0cn x0x
42 41 mul02d x00x=0
43 41 mul01d x0x0=0
44 40 42 43 jca32 x0y0z0xy+z=xy+xzx+yz=xz+yz0x=0x0=0
45 44 rgen x0y0z0xy+z=xy+xzx+yz=xz+yz0x=0x0=0
46 5 18 ressbas2 00=Basefld𝑠0
47 12 46 ax-mp 0=Basefld𝑠0
48 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
49 cnfldadd +=+fld
50 5 49 ressplusg 0V+=+fld𝑠0
51 8 50 ax-mp +=+fld𝑠0
52 5 22 ressmulr 0V×=fld𝑠0
53 8 52 ax-mp ×=fld𝑠0
54 ringmnd fldRingfldMnd
55 1 54 ax-mp fldMnd
56 0nn0 00
57 cnfld0 0=0fld
58 5 18 57 ress0g fldMnd0000=0fld𝑠0
59 55 56 12 58 mp3an 0=0fld𝑠0
60 47 48 51 53 59 issrg fld𝑠0SRingfld𝑠0CMndmulGrpfld𝑠0Mndx0y0z0xy+z=xy+xzx+yz=xz+yz0x=0x0=0
61 7 30 45 60 mpbir3an fld𝑠0SRing