Description: The nonnegative integers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 1-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0srg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | |
|
2 | ringcmn | |
|
3 | 1 2 | ax-mp | |
4 | nn0subm | |
|
5 | eqid | |
|
6 | 5 | submcmn | |
7 | 3 4 6 | mp2an | |
8 | nn0ex | |
|
9 | eqid | |
|
10 | 5 9 | mgpress | |
11 | 3 8 10 | mp2an | |
12 | nn0sscn | |
|
13 | 1nn0 | |
|
14 | nn0mulcl | |
|
15 | 14 | rgen2 | |
16 | 9 | ringmgp | |
17 | 1 16 | ax-mp | |
18 | cnfldbas | |
|
19 | 9 18 | mgpbas | |
20 | cnfld1 | |
|
21 | 9 20 | ringidval | |
22 | cnfldmul | |
|
23 | 9 22 | mgpplusg | |
24 | 19 21 23 | issubm | |
25 | 17 24 | ax-mp | |
26 | 12 13 15 25 | mpbir3an | |
27 | eqid | |
|
28 | 27 | submmnd | |
29 | 26 28 | ax-mp | |
30 | 11 29 | eqeltrri | |
31 | simpl | |
|
32 | 31 | nn0cnd | |
33 | simprl | |
|
34 | 33 | nn0cnd | |
35 | simprr | |
|
36 | 35 | nn0cnd | |
37 | 32 34 36 | adddid | |
38 | 32 34 36 | adddird | |
39 | 37 38 | jca | |
40 | 39 | ralrimivva | |
41 | nn0cn | |
|
42 | 41 | mul02d | |
43 | 41 | mul01d | |
44 | 40 42 43 | jca32 | |
45 | 44 | rgen | |
46 | 5 18 | ressbas2 | |
47 | 12 46 | ax-mp | |
48 | eqid | |
|
49 | cnfldadd | |
|
50 | 5 49 | ressplusg | |
51 | 8 50 | ax-mp | |
52 | 5 22 | ressmulr | |
53 | 8 52 | ax-mp | |
54 | ringmnd | |
|
55 | 1 54 | ax-mp | |
56 | 0nn0 | |
|
57 | cnfld0 | |
|
58 | 5 18 57 | ress0g | |
59 | 55 56 12 58 | mp3an | |
60 | 47 48 51 53 59 | issrg | |
61 | 7 30 45 60 | mpbir3an | |