Description: Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | noextend.1 | |
|
Assertion | noextendseq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noextend.1 | |
|
2 | nofun | |
|
3 | fnconstg | |
|
4 | fnfun | |
|
5 | 1 3 4 | mp2b | |
6 | snnzg | |
|
7 | dmxp | |
|
8 | 1 6 7 | mp2b | |
9 | 8 | ineq2i | |
10 | disjdif | |
|
11 | 9 10 | eqtri | |
12 | funun | |
|
13 | 11 12 | mpan2 | |
14 | 2 5 13 | sylancl | |
15 | 14 | adantr | |
16 | dmun | |
|
17 | 8 | uneq2i | |
18 | 16 17 | eqtri | |
19 | nodmon | |
|
20 | undif | |
|
21 | eleq1a | |
|
22 | 21 | adantl | |
23 | 20 22 | biimtrid | |
24 | ssdif0 | |
|
25 | uneq2 | |
|
26 | un0 | |
|
27 | 25 26 | eqtrdi | |
28 | 27 | eleq1d | |
29 | 28 | biimprcd | |
30 | 29 | adantr | |
31 | 24 30 | biimtrid | |
32 | eloni | |
|
33 | eloni | |
|
34 | ordtri2or2 | |
|
35 | 32 33 34 | syl2an | |
36 | 23 31 35 | mpjaod | |
37 | 19 36 | sylan | |
38 | 18 37 | eqeltrid | |
39 | rnun | |
|
40 | norn | |
|
41 | 40 | adantr | |
42 | rnxpss | |
|
43 | snssi | |
|
44 | 1 43 | ax-mp | |
45 | 42 44 | sstri | |
46 | unss | |
|
47 | 41 45 46 | sylanblc | |
48 | 39 47 | eqsstrid | |
49 | elno2 | |
|
50 | 15 38 48 49 | syl3anbrc | |