| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noextend.1 |
|
| 2 |
|
nofun |
|
| 3 |
|
fnconstg |
|
| 4 |
|
fnfun |
|
| 5 |
1 3 4
|
mp2b |
|
| 6 |
|
snnzg |
|
| 7 |
|
dmxp |
|
| 8 |
1 6 7
|
mp2b |
|
| 9 |
8
|
ineq2i |
|
| 10 |
|
disjdif |
|
| 11 |
9 10
|
eqtri |
|
| 12 |
|
funun |
|
| 13 |
11 12
|
mpan2 |
|
| 14 |
2 5 13
|
sylancl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
dmun |
|
| 17 |
8
|
uneq2i |
|
| 18 |
16 17
|
eqtri |
|
| 19 |
|
nodmon |
|
| 20 |
|
undif |
|
| 21 |
|
eleq1a |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
biimtrid |
|
| 24 |
|
ssdif0 |
|
| 25 |
|
uneq2 |
|
| 26 |
|
un0 |
|
| 27 |
25 26
|
eqtrdi |
|
| 28 |
27
|
eleq1d |
|
| 29 |
28
|
biimprcd |
|
| 30 |
29
|
adantr |
|
| 31 |
24 30
|
biimtrid |
|
| 32 |
|
eloni |
|
| 33 |
|
eloni |
|
| 34 |
|
ordtri2or2 |
|
| 35 |
32 33 34
|
syl2an |
|
| 36 |
23 31 35
|
mpjaod |
|
| 37 |
19 36
|
sylan |
|
| 38 |
18 37
|
eqeltrid |
|
| 39 |
|
rnun |
|
| 40 |
|
norn |
|
| 41 |
40
|
adantr |
|
| 42 |
|
rnxpss |
|
| 43 |
|
snssi |
|
| 44 |
1 43
|
ax-mp |
|
| 45 |
42 44
|
sstri |
|
| 46 |
|
unss |
|
| 47 |
41 45 46
|
sylanblc |
|
| 48 |
39 47
|
eqsstrid |
|
| 49 |
|
elno2 |
|
| 50 |
15 38 48 49
|
syl3anbrc |
|