Metamath Proof Explorer


Theorem noextendseq

Description: Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021)

Ref Expression
Hypothesis noextend.1 X1𝑜2𝑜
Assertion noextendseq ANoBOnABdomA×XNo

Proof

Step Hyp Ref Expression
1 noextend.1 X1𝑜2𝑜
2 nofun ANoFunA
3 fnconstg X1𝑜2𝑜BdomA×XFnBdomA
4 fnfun BdomA×XFnBdomAFunBdomA×X
5 1 3 4 mp2b FunBdomA×X
6 snnzg X1𝑜2𝑜X
7 dmxp XdomBdomA×X=BdomA
8 1 6 7 mp2b domBdomA×X=BdomA
9 8 ineq2i domAdomBdomA×X=domABdomA
10 disjdif domABdomA=
11 9 10 eqtri domAdomBdomA×X=
12 funun FunAFunBdomA×XdomAdomBdomA×X=FunABdomA×X
13 11 12 mpan2 FunAFunBdomA×XFunABdomA×X
14 2 5 13 sylancl ANoFunABdomA×X
15 14 adantr ANoBOnFunABdomA×X
16 dmun domABdomA×X=domAdomBdomA×X
17 8 uneq2i domAdomBdomA×X=domABdomA
18 16 17 eqtri domABdomA×X=domABdomA
19 nodmon ANodomAOn
20 undif domABdomABdomA=B
21 eleq1a BOndomABdomA=BdomABdomAOn
22 21 adantl domAOnBOndomABdomA=BdomABdomAOn
23 20 22 biimtrid domAOnBOndomABdomABdomAOn
24 ssdif0 BdomABdomA=
25 uneq2 BdomA=domABdomA=domA
26 un0 domA=domA
27 25 26 eqtrdi BdomA=domABdomA=domA
28 27 eleq1d BdomA=domABdomAOndomAOn
29 28 biimprcd domAOnBdomA=domABdomAOn
30 29 adantr domAOnBOnBdomA=domABdomAOn
31 24 30 biimtrid domAOnBOnBdomAdomABdomAOn
32 eloni domAOnOrddomA
33 eloni BOnOrdB
34 ordtri2or2 OrddomAOrdBdomABBdomA
35 32 33 34 syl2an domAOnBOndomABBdomA
36 23 31 35 mpjaod domAOnBOndomABdomAOn
37 19 36 sylan ANoBOndomABdomAOn
38 18 37 eqeltrid ANoBOndomABdomA×XOn
39 rnun ranABdomA×X=ranAranBdomA×X
40 norn ANoranA1𝑜2𝑜
41 40 adantr ANoBOnranA1𝑜2𝑜
42 rnxpss ranBdomA×XX
43 snssi X1𝑜2𝑜X1𝑜2𝑜
44 1 43 ax-mp X1𝑜2𝑜
45 42 44 sstri ranBdomA×X1𝑜2𝑜
46 unss ranA1𝑜2𝑜ranBdomA×X1𝑜2𝑜ranAranBdomA×X1𝑜2𝑜
47 41 45 46 sylanblc ANoBOnranAranBdomA×X1𝑜2𝑜
48 39 47 eqsstrid ANoBOnranABdomA×X1𝑜2𝑜
49 elno2 ABdomA×XNoFunABdomA×XdomABdomA×XOnranABdomA×X1𝑜2𝑜
50 15 38 48 49 syl3anbrc ANoBOnABdomA×XNo