Metamath Proof Explorer


Theorem noinfbnd1lem4

Description: Lemma for noinfbnd1 . If U is a prolongment of T and in B , then ( Udom T ) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfbnd1lem4 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 simpl1 ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sU¬xByB¬y<sx
3 simpl2 ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUBNoBV
4 simprl ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUwB
5 simpl3 ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUUBUdomT=T
6 simp2l ¬xByB¬y<sxBNoBVUBUdomT=TBNo
7 6 sselda ¬xByB¬y<sxBNoBVUBUdomT=TwBwNo
8 simp3l ¬xByB¬y<sxBNoBVUBUdomT=TUB
9 6 8 sseldd ¬xByB¬y<sxBNoBVUBUdomT=TUNo
10 9 adantr ¬xByB¬y<sxBNoBVUBUdomT=TwBUNo
11 sltso <sOrNo
12 soasym <sOrNowNoUNow<sU¬U<sw
13 11 12 mpan wNoUNow<sU¬U<sw
14 7 10 13 syl2anc ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sU¬U<sw
15 14 impr ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sU¬U<sw
16 4 15 jca ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUwB¬U<sw
17 1 noinfbnd1lem2 ¬xByB¬y<sxBNoBVUBUdomT=TwB¬U<swwdomT=T
18 2 3 5 16 17 syl112anc ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUwdomT=T
19 1 noinfbnd1lem3 ¬xByB¬y<sxBNoBVwBwdomT=TwdomT1𝑜
20 2 3 4 18 19 syl112anc ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sUwdomT1𝑜
21 20 neneqd ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sU¬wdomT=1𝑜
22 21 expr ¬xByB¬y<sxBNoBVUBUdomT=TwBw<sU¬wdomT=1𝑜
23 imnan w<sU¬wdomT=1𝑜¬w<sUwdomT=1𝑜
24 22 23 sylib ¬xByB¬y<sxBNoBVUBUdomT=TwB¬w<sUwdomT=1𝑜
25 24 nrexdv ¬xByB¬y<sxBNoBVUBUdomT=T¬wBw<sUwdomT=1𝑜
26 breq2 x=Uy<sxy<sU
27 26 rexbidv x=UyBy<sxyBy<sU
28 simpl1 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=¬xByB¬y<sx
29 dfral2 xByBy<sx¬xB¬yBy<sx
30 ralnex yB¬y<sx¬yBy<sx
31 30 rexbii xByB¬y<sxxB¬yBy<sx
32 29 31 xchbinxr xByBy<sx¬xByB¬y<sx
33 28 32 sylibr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=xByBy<sx
34 simpl3l ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=UB
35 27 33 34 rspcdva ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=yBy<sU
36 breq1 y=wy<sUw<sU
37 36 cbvrexvw yBy<sUwBw<sU
38 35 37 sylib ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sU
39 simpl2l ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=BNo
40 39 adantr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUBNo
41 simprl ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwB
42 40 41 sseldd ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwNo
43 34 adantr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUUB
44 40 43 sseldd ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUUNo
45 simpl2 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=BNoBV
46 1 noinfno BNoBVTNo
47 45 46 syl ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=TNo
48 47 adantr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUTNo
49 nodmon TNodomTOn
50 48 49 syl ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUdomTOn
51 simpll1 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sU¬xByB¬y<sx
52 simpll2 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUBNoBV
53 simpll3 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUUBUdomT=T
54 simprr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUw<sU
55 42 44 13 syl2anc ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUw<sU¬U<sw
56 54 55 mpd ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sU¬U<sw
57 41 56 jca ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwB¬U<sw
58 51 52 53 57 17 syl112anc ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwdomT=T
59 simpl3r ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=UdomT=T
60 59 adantr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUUdomT=T
61 58 60 eqtr4d ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwdomT=UdomT
62 simplr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUUdomT=
63 nogt01o wNoUNodomTOnwdomT=UdomTw<sUUdomT=wdomT=1𝑜
64 42 44 50 61 54 62 63 syl321anc ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwdomT=1𝑜
65 64 expr ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwdomT=1𝑜
66 65 ancld ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUw<sUwdomT=1𝑜
67 66 reximdva ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwBw<sUwdomT=1𝑜
68 38 67 mpd ¬xByB¬y<sxBNoBVUBUdomT=TUdomT=wBw<sUwdomT=1𝑜
69 25 68 mtand ¬xByB¬y<sxBNoBVUBUdomT=T¬UdomT=
70 69 neqned ¬xByB¬y<sxBNoBVUBUdomT=TUdomT