Description: Lemma for noinfbnd1 . If U is a prolongment of T and in B , then ( Udom T ) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | noinfbnd1.1 | |
|
Assertion | noinfbnd1lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noinfbnd1.1 | |
|
2 | simpl1 | |
|
3 | simpl2 | |
|
4 | simprl | |
|
5 | simpl3 | |
|
6 | simp2l | |
|
7 | 6 | sselda | |
8 | simp3l | |
|
9 | 6 8 | sseldd | |
10 | 9 | adantr | |
11 | sltso | |
|
12 | soasym | |
|
13 | 11 12 | mpan | |
14 | 7 10 13 | syl2anc | |
15 | 14 | impr | |
16 | 4 15 | jca | |
17 | 1 | noinfbnd1lem2 | |
18 | 2 3 5 16 17 | syl112anc | |
19 | 1 | noinfbnd1lem3 | |
20 | 2 3 4 18 19 | syl112anc | |
21 | 20 | neneqd | |
22 | 21 | expr | |
23 | imnan | |
|
24 | 22 23 | sylib | |
25 | 24 | nrexdv | |
26 | breq2 | |
|
27 | 26 | rexbidv | |
28 | simpl1 | |
|
29 | dfral2 | |
|
30 | ralnex | |
|
31 | 30 | rexbii | |
32 | 29 31 | xchbinxr | |
33 | 28 32 | sylibr | |
34 | simpl3l | |
|
35 | 27 33 34 | rspcdva | |
36 | breq1 | |
|
37 | 36 | cbvrexvw | |
38 | 35 37 | sylib | |
39 | simpl2l | |
|
40 | 39 | adantr | |
41 | simprl | |
|
42 | 40 41 | sseldd | |
43 | 34 | adantr | |
44 | 40 43 | sseldd | |
45 | simpl2 | |
|
46 | 1 | noinfno | |
47 | 45 46 | syl | |
48 | 47 | adantr | |
49 | nodmon | |
|
50 | 48 49 | syl | |
51 | simpll1 | |
|
52 | simpll2 | |
|
53 | simpll3 | |
|
54 | simprr | |
|
55 | 42 44 13 | syl2anc | |
56 | 54 55 | mpd | |
57 | 41 56 | jca | |
58 | 51 52 53 57 17 | syl112anc | |
59 | simpl3r | |
|
60 | 59 | adantr | |
61 | 58 60 | eqtr4d | |
62 | simplr | |
|
63 | nogt01o | |
|
64 | 42 44 50 61 54 62 63 | syl321anc | |
65 | 64 | expr | |
66 | 65 | ancld | |
67 | 66 | reximdva | |
68 | 38 67 | mpd | |
69 | 25 68 | mtand | |
70 | 69 | neqned | |