Metamath Proof Explorer


Theorem noinfcbv

Description: Change bound variables for surreal infimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfcbv.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfcbv T=ifaBbB¬b<saιaB|bB¬b<sadomιaB|bB¬b<sa1𝑜cb|dBbdomdeB¬d<sedsucb=esucbιa|dBcdomdeB¬d<sedsucc=esuccdc=a

Proof

Step Hyp Ref Expression
1 noinfcbv.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 breq2 x=ay<sxy<sa
3 2 notbid x=a¬y<sx¬y<sa
4 3 ralbidv x=ayB¬y<sxyB¬y<sa
5 breq1 y=by<sab<sa
6 5 notbid y=b¬y<sa¬b<sa
7 6 cbvralvw yB¬y<sabB¬b<sa
8 4 7 bitrdi x=ayB¬y<sxbB¬b<sa
9 8 cbvrexvw xByB¬y<sxaBbB¬b<sa
10 8 cbvriotavw ιxB|yB¬y<sx=ιaB|bB¬b<sa
11 10 dmeqi domιxB|yB¬y<sx=domιaB|bB¬b<sa
12 11 opeq1i domιxB|yB¬y<sx1𝑜=domιaB|bB¬b<sa1𝑜
13 12 sneqi domιxB|yB¬y<sx1𝑜=domιaB|bB¬b<sa1𝑜
14 10 13 uneq12i ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜=ιaB|bB¬b<sadomιaB|bB¬b<sa1𝑜
15 eleq1w g=cgdomucdomu
16 suceq g=csucg=succ
17 16 reseq2d g=cusucg=usucc
18 16 reseq2d g=cvsucg=vsucc
19 17 18 eqeq12d g=cusucg=vsucgusucc=vsucc
20 19 imbi2d g=c¬u<svusucg=vsucg¬u<svusucc=vsucc
21 20 ralbidv g=cvB¬u<svusucg=vsucgvB¬u<svusucc=vsucc
22 fveqeq2 g=cug=xuc=x
23 15 21 22 3anbi123d g=cgdomuvB¬u<svusucg=vsucgug=xcdomuvB¬u<svusucc=vsuccuc=x
24 23 rexbidv g=cuBgdomuvB¬u<svusucg=vsucgug=xuBcdomuvB¬u<svusucc=vsuccuc=x
25 24 iotabidv g=cιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιx|uBcdomuvB¬u<svusucc=vsuccuc=x
26 eqeq2 x=auc=xuc=a
27 26 3anbi3d x=acdomuvB¬u<svusucc=vsuccuc=xcdomuvB¬u<svusucc=vsuccuc=a
28 27 rexbidv x=auBcdomuvB¬u<svusucc=vsuccuc=xuBcdomuvB¬u<svusucc=vsuccuc=a
29 dmeq u=ddomu=domd
30 29 eleq2d u=dcdomucdomd
31 breq1 u=du<svd<sv
32 31 notbid u=d¬u<sv¬d<sv
33 reseq1 u=dusucc=dsucc
34 33 eqeq1d u=dusucc=vsuccdsucc=vsucc
35 32 34 imbi12d u=d¬u<svusucc=vsucc¬d<svdsucc=vsucc
36 35 ralbidv u=dvB¬u<svusucc=vsuccvB¬d<svdsucc=vsucc
37 breq2 v=ed<svd<se
38 37 notbid v=e¬d<sv¬d<se
39 reseq1 v=evsucc=esucc
40 39 eqeq2d v=edsucc=vsuccdsucc=esucc
41 38 40 imbi12d v=e¬d<svdsucc=vsucc¬d<sedsucc=esucc
42 41 cbvralvw vB¬d<svdsucc=vsucceB¬d<sedsucc=esucc
43 36 42 bitrdi u=dvB¬u<svusucc=vsucceB¬d<sedsucc=esucc
44 fveq1 u=duc=dc
45 44 eqeq1d u=duc=adc=a
46 30 43 45 3anbi123d u=dcdomuvB¬u<svusucc=vsuccuc=acdomdeB¬d<sedsucc=esuccdc=a
47 46 cbvrexvw uBcdomuvB¬u<svusucc=vsuccuc=adBcdomdeB¬d<sedsucc=esuccdc=a
48 28 47 bitrdi x=auBcdomuvB¬u<svusucc=vsuccuc=xdBcdomdeB¬d<sedsucc=esuccdc=a
49 48 cbviotavw ιx|uBcdomuvB¬u<svusucc=vsuccuc=x=ιa|dBcdomdeB¬d<sedsucc=esuccdc=a
50 25 49 eqtrdi g=cιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιa|dBcdomdeB¬d<sedsucc=esuccdc=a
51 50 cbvmptv gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=cy|uBydomuvB¬u<svusucy=vsucyιa|dBcdomdeB¬d<sedsucc=esuccdc=a
52 eleq1w y=bydomubdomu
53 suceq y=bsucy=sucb
54 53 reseq2d y=busucy=usucb
55 53 reseq2d y=bvsucy=vsucb
56 54 55 eqeq12d y=busucy=vsucyusucb=vsucb
57 56 imbi2d y=b¬u<svusucy=vsucy¬u<svusucb=vsucb
58 57 ralbidv y=bvB¬u<svusucy=vsucyvB¬u<svusucb=vsucb
59 52 58 anbi12d y=bydomuvB¬u<svusucy=vsucybdomuvB¬u<svusucb=vsucb
60 59 rexbidv y=buBydomuvB¬u<svusucy=vsucyuBbdomuvB¬u<svusucb=vsucb
61 29 eleq2d u=dbdomubdomd
62 reseq1 u=dusucb=dsucb
63 62 eqeq1d u=dusucb=vsucbdsucb=vsucb
64 32 63 imbi12d u=d¬u<svusucb=vsucb¬d<svdsucb=vsucb
65 64 ralbidv u=dvB¬u<svusucb=vsucbvB¬d<svdsucb=vsucb
66 reseq1 v=evsucb=esucb
67 66 eqeq2d v=edsucb=vsucbdsucb=esucb
68 38 67 imbi12d v=e¬d<svdsucb=vsucb¬d<sedsucb=esucb
69 68 cbvralvw vB¬d<svdsucb=vsucbeB¬d<sedsucb=esucb
70 65 69 bitrdi u=dvB¬u<svusucb=vsucbeB¬d<sedsucb=esucb
71 61 70 anbi12d u=dbdomuvB¬u<svusucb=vsucbbdomdeB¬d<sedsucb=esucb
72 71 cbvrexvw uBbdomuvB¬u<svusucb=vsucbdBbdomdeB¬d<sedsucb=esucb
73 60 72 bitrdi y=buBydomuvB¬u<svusucy=vsucydBbdomdeB¬d<sedsucb=esucb
74 73 cbvabv y|uBydomuvB¬u<svusucy=vsucy=b|dBbdomdeB¬d<sedsucb=esucb
75 74 mpteq1i cy|uBydomuvB¬u<svusucy=vsucyιa|dBcdomdeB¬d<sedsucc=esuccdc=a=cb|dBbdomdeB¬d<sedsucb=esucbιa|dBcdomdeB¬d<sedsucc=esuccdc=a
76 51 75 eqtri gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=cb|dBbdomdeB¬d<sedsucb=esucbιa|dBcdomdeB¬d<sedsucc=esuccdc=a
77 9 14 76 ifbieq12i ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=ifaBbB¬b<saιaB|bB¬b<sadomιaB|bB¬b<sa1𝑜cb|dBbdomdeB¬d<sedsucb=esucbιa|dBcdomdeB¬d<sedsucc=esuccdc=a
78 1 77 eqtri T=ifaBbB¬b<saιaB|bB¬b<sadomιaB|bB¬b<sa1𝑜cb|dBbdomdeB¬d<sedsucb=esucbιa|dBcdomdeB¬d<sedsucc=esuccdc=a