Metamath Proof Explorer


Theorem ntrclsk2

Description: An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsk2 φ s 𝒫 B I s s s 𝒫 B s K s

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 fveq2 s = t I s = I t
5 id s = t s = t
6 4 5 sseq12d s = t I s s I t t
7 6 cbvralvw s 𝒫 B I s s t 𝒫 B I t t
8 2 3 ntrclsrcomplex φ B s 𝒫 B
9 8 adantr φ s 𝒫 B B s 𝒫 B
10 2 3 ntrclsrcomplex φ B t 𝒫 B
11 10 adantr φ t 𝒫 B B t 𝒫 B
12 difeq2 s = B t B s = B B t
13 12 eqeq2d s = B t t = B s t = B B t
14 13 adantl φ t 𝒫 B s = B t t = B s t = B B t
15 elpwi t 𝒫 B t B
16 dfss4 t B B B t = t
17 15 16 sylib t 𝒫 B B B t = t
18 17 adantl φ t 𝒫 B B B t = t
19 18 eqcomd φ t 𝒫 B t = B B t
20 11 14 19 rspcedvd φ t 𝒫 B s 𝒫 B t = B s
21 fveq2 t = B s I t = I B s
22 id t = B s t = B s
23 21 22 sseq12d t = B s I t t I B s B s
24 23 3ad2ant3 φ s 𝒫 B t = B s I t t I B s B s
25 1 2 3 ntrclsiex φ I 𝒫 B 𝒫 B
26 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
27 25 26 syl φ I : 𝒫 B 𝒫 B
28 27 3ad2ant1 φ s 𝒫 B t = B s I : 𝒫 B 𝒫 B
29 8 3ad2ant1 φ s 𝒫 B t = B s B s 𝒫 B
30 28 29 ffvelrnd φ s 𝒫 B t = B s I B s 𝒫 B
31 30 elpwid φ s 𝒫 B t = B s I B s B
32 difssd φ s 𝒫 B t = B s B s B
33 sscon34b I B s B B s B I B s B s B B s B I B s
34 31 32 33 syl2anc φ s 𝒫 B t = B s I B s B s B B s B I B s
35 simp2 φ s 𝒫 B t = B s s 𝒫 B
36 elpwi s 𝒫 B s B
37 dfss4 s B B B s = s
38 36 37 sylib s 𝒫 B B B s = s
39 38 sseq1d s 𝒫 B B B s B I B s s B I B s
40 35 39 syl φ s 𝒫 B t = B s B B s B I B s s B I B s
41 34 40 bitrd φ s 𝒫 B t = B s I B s B s s B I B s
42 2 3 ntrclsbex φ B V
43 42 3ad2ant1 φ s 𝒫 B t = B s B V
44 25 3ad2ant1 φ s 𝒫 B t = B s I 𝒫 B 𝒫 B
45 eqid D I = D I
46 eqid D I s = D I s
47 1 2 43 44 45 35 46 dssmapfv3d φ s 𝒫 B t = B s D I s = B I B s
48 47 sseq2d φ s 𝒫 B t = B s s D I s s B I B s
49 1 2 3 ntrclsfv1 φ D I = K
50 49 fveq1d φ D I s = K s
51 50 sseq2d φ s D I s s K s
52 51 3ad2ant1 φ s 𝒫 B t = B s s D I s s K s
53 41 48 52 3bitr2d φ s 𝒫 B t = B s I B s B s s K s
54 24 53 bitrd φ s 𝒫 B t = B s I t t s K s
55 9 20 54 ralxfrd2 φ t 𝒫 B I t t s 𝒫 B s K s
56 7 55 syl5bb φ s 𝒫 B I s s s 𝒫 B s K s