Metamath Proof Explorer


Theorem ntrivcvgtail

Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017)

Ref Expression
Hypotheses ntrivcvgtail.1 Z=M
ntrivcvgtail.2 φNZ
ntrivcvgtail.3 φseqM×FX
ntrivcvgtail.4 φX0
ntrivcvgtail.5 φkZFk
Assertion ntrivcvgtail φseqN×F0seqN×FseqN×F

Proof

Step Hyp Ref Expression
1 ntrivcvgtail.1 Z=M
2 ntrivcvgtail.2 φNZ
3 ntrivcvgtail.3 φseqM×FX
4 ntrivcvgtail.4 φX0
5 ntrivcvgtail.5 φkZFk
6 fclim :dom
7 ffun :domFun
8 6 7 ax-mp Fun
9 funbrfv FunseqM×FXseqM×F=X
10 8 3 9 mpsyl φseqM×F=X
11 10 4 eqnetrd φseqM×F0
12 3 10 breqtrrd φseqM×FseqM×F
13 11 12 jca φseqM×F0seqM×FseqM×F
14 13 adantr φN=MseqM×F0seqM×FseqM×F
15 seqeq1 N=MseqN×F=seqM×F
16 15 fveq2d N=MseqN×F=seqM×F
17 16 neeq1d N=MseqN×F0seqM×F0
18 15 16 breq12d N=MseqN×FseqN×FseqM×FseqM×F
19 17 18 anbi12d N=MseqN×F0seqN×FseqN×FseqM×F0seqM×FseqM×F
20 19 adantl φN=MseqN×F0seqN×FseqN×FseqM×F0seqM×FseqM×F
21 14 20 mpbird φN=MseqN×F0seqN×FseqN×F
22 simpr φN1MN1M
23 22 1 eleqtrrdi φN1MN1Z
24 5 adantlr φN1MkZFk
25 3 adantr φN1MseqM×FX
26 4 adantr φN1MX0
27 1 23 25 26 24 ntrivcvgfvn0 φN1MseqM×FN10
28 1 23 24 25 27 clim2div φN1MseqN-1+1×FXseqM×FN1
29 funbrfv FunseqN-1+1×FXseqM×FN1seqN-1+1×F=XseqM×FN1
30 8 28 29 mpsyl φN1MseqN-1+1×F=XseqM×FN1
31 climcl seqM×FXX
32 3 31 syl φX
33 32 adantr φN1MX
34 eluzel2 NMM
35 34 1 eleq2s NZM
36 2 35 syl φM
37 1 36 5 prodf φseqM×F:Z
38 1 feq2i seqM×F:ZseqM×F:M
39 37 38 sylib φseqM×F:M
40 39 ffvelcdmda φN1MseqM×FN1
41 33 40 26 27 divne0d φN1MXseqM×FN10
42 30 41 eqnetrd φN1MseqN-1+1×F0
43 28 30 breqtrrd φN1MseqN-1+1×FseqN-1+1×F
44 uzssz M
45 1 44 eqsstri Z
46 45 2 sselid φN
47 46 zcnd φN
48 47 adantr φN1MN
49 1cnd φN1M1
50 48 49 npcand φN1MN-1+1=N
51 50 seqeq1d φN1MseqN-1+1×F=seqN×F
52 51 fveq2d φN1MseqN-1+1×F=seqN×F
53 52 neeq1d φN1MseqN-1+1×F0seqN×F0
54 51 52 breq12d φN1MseqN-1+1×FseqN-1+1×FseqN×FseqN×F
55 53 54 anbi12d φN1MseqN-1+1×F0seqN-1+1×FseqN-1+1×FseqN×F0seqN×FseqN×F
56 42 43 55 mpbi2and φN1MseqN×F0seqN×FseqN×F
57 2 1 eleqtrdi φNM
58 uzm1 NMN=MN1M
59 57 58 syl φN=MN1M
60 21 56 59 mpjaodan φseqN×F0seqN×FseqN×F