Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrivcvgtail.1 | |
|
ntrivcvgtail.2 | |
||
ntrivcvgtail.3 | |
||
ntrivcvgtail.4 | |
||
ntrivcvgtail.5 | |
||
Assertion | ntrivcvgtail | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgtail.1 | |
|
2 | ntrivcvgtail.2 | |
|
3 | ntrivcvgtail.3 | |
|
4 | ntrivcvgtail.4 | |
|
5 | ntrivcvgtail.5 | |
|
6 | fclim | |
|
7 | ffun | |
|
8 | 6 7 | ax-mp | |
9 | funbrfv | |
|
10 | 8 3 9 | mpsyl | |
11 | 10 4 | eqnetrd | |
12 | 3 10 | breqtrrd | |
13 | 11 12 | jca | |
14 | 13 | adantr | |
15 | seqeq1 | |
|
16 | 15 | fveq2d | |
17 | 16 | neeq1d | |
18 | 15 16 | breq12d | |
19 | 17 18 | anbi12d | |
20 | 19 | adantl | |
21 | 14 20 | mpbird | |
22 | simpr | |
|
23 | 22 1 | eleqtrrdi | |
24 | 5 | adantlr | |
25 | 3 | adantr | |
26 | 4 | adantr | |
27 | 1 23 25 26 24 | ntrivcvgfvn0 | |
28 | 1 23 24 25 27 | clim2div | |
29 | funbrfv | |
|
30 | 8 28 29 | mpsyl | |
31 | climcl | |
|
32 | 3 31 | syl | |
33 | 32 | adantr | |
34 | eluzel2 | |
|
35 | 34 1 | eleq2s | |
36 | 2 35 | syl | |
37 | 1 36 5 | prodf | |
38 | 1 | feq2i | |
39 | 37 38 | sylib | |
40 | 39 | ffvelcdmda | |
41 | 33 40 26 27 | divne0d | |
42 | 30 41 | eqnetrd | |
43 | 28 30 | breqtrrd | |
44 | uzssz | |
|
45 | 1 44 | eqsstri | |
46 | 45 2 | sselid | |
47 | 46 | zcnd | |
48 | 47 | adantr | |
49 | 1cnd | |
|
50 | 48 49 | npcand | |
51 | 50 | seqeq1d | |
52 | 51 | fveq2d | |
53 | 52 | neeq1d | |
54 | 51 52 | breq12d | |
55 | 53 54 | anbi12d | |
56 | 42 43 55 | mpbi2and | |
57 | 2 1 | eleqtrdi | |
58 | uzm1 | |
|
59 | 57 58 | syl | |
60 | 21 56 59 | mpjaodan | |