Description: When A is a subclass of On , F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of A ). The proof avoids ax-rep (the second statement is trivial under ax-rep ). (Contributed by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oismo.1 | |
|
Assertion | oismo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oismo.1 | |
|
2 | epweon | |
|
3 | wess | |
|
4 | 2 3 | mpi | |
5 | epse | |
|
6 | 1 | oiiso2 | |
7 | 4 5 6 | sylancl | |
8 | 1 | oicl | |
9 | 1 | oif | |
10 | frn | |
|
11 | 9 10 | ax-mp | |
12 | id | |
|
13 | 11 12 | sstrid | |
14 | smoiso2 | |
|
15 | 8 13 14 | sylancr | |
16 | 7 15 | mpbird | |
17 | 16 | simprd | |
18 | 11 | a1i | |
19 | simprl | |
|
20 | 4 | adantr | |
21 | 5 | a1i | |
22 | ffn | |
|
23 | 9 22 | mp1i | |
24 | simplrr | |
|
25 | 4 | ad2antrr | |
26 | 5 | a1i | |
27 | simplrl | |
|
28 | simpr | |
|
29 | 1 | oiiniseg | |
30 | 25 26 27 28 29 | syl22anc | |
31 | 30 | ord | |
32 | 24 31 | mt3d | |
33 | epel | |
|
34 | 32 33 | sylib | |
35 | 34 | ralrimiva | |
36 | ffnfv | |
|
37 | 23 35 36 | sylanbrc | |
38 | 9 22 | mp1i | |
39 | 17 | ad2antrr | |
40 | smogt | |
|
41 | 38 39 28 40 | syl3anc | |
42 | ordelon | |
|
43 | 8 28 42 | sylancr | |
44 | simpll | |
|
45 | 44 27 | sseldd | |
46 | ontr2 | |
|
47 | 43 45 46 | syl2anc | |
48 | 41 34 47 | mp2and | |
49 | 48 | ex | |
50 | 49 | ssrdv | |
51 | 19 50 | ssexd | |
52 | fex2 | |
|
53 | 37 51 19 52 | syl3anc | |
54 | 1 | ordtype2 | |
55 | 20 21 53 54 | syl3anc | |
56 | isof1o | |
|
57 | f1ofo | |
|
58 | forn | |
|
59 | 55 56 57 58 | 4syl | |
60 | 19 59 | eleqtrrd | |
61 | 60 | expr | |
62 | 61 | pm2.18d | |
63 | 18 62 | eqelssd | |
64 | 17 63 | jca | |