Metamath Proof Explorer


Theorem oismo

Description: When A is a subclass of On , F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of A ). The proof avoids ax-rep (the second statement is trivial under ax-rep ). (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis oismo.1 F=OrdIsoEA
Assertion oismo AOnSmoFranF=A

Proof

Step Hyp Ref Expression
1 oismo.1 F=OrdIsoEA
2 epweon EWeOn
3 wess AOnEWeOnEWeA
4 2 3 mpi AOnEWeA
5 epse ESeA
6 1 oiiso2 EWeAESeAFIsomE,EdomFranF
7 4 5 6 sylancl AOnFIsomE,EdomFranF
8 1 oicl OrddomF
9 1 oif F:domFA
10 frn F:domFAranFA
11 9 10 ax-mp ranFA
12 id AOnAOn
13 11 12 sstrid AOnranFOn
14 smoiso2 OrddomFranFOnF:domFontoranFSmoFFIsomE,EdomFranF
15 8 13 14 sylancr AOnF:domFontoranFSmoFFIsomE,EdomFranF
16 7 15 mpbird AOnF:domFontoranFSmoF
17 16 simprd AOnSmoF
18 11 a1i AOnranFA
19 simprl AOnxA¬xranFxA
20 4 adantr AOnxA¬xranFEWeA
21 5 a1i AOnxA¬xranFESeA
22 ffn F:domFAFFndomF
23 9 22 mp1i AOnxA¬xranFFFndomF
24 simplrr AOnxA¬xranFydomF¬xranF
25 4 ad2antrr AOnxA¬xranFydomFEWeA
26 5 a1i AOnxA¬xranFydomFESeA
27 simplrl AOnxA¬xranFydomFxA
28 simpr AOnxA¬xranFydomFydomF
29 1 oiiniseg EWeAESeAxAydomFFyExxranF
30 25 26 27 28 29 syl22anc AOnxA¬xranFydomFFyExxranF
31 30 ord AOnxA¬xranFydomF¬FyExxranF
32 24 31 mt3d AOnxA¬xranFydomFFyEx
33 epel FyExFyx
34 32 33 sylib AOnxA¬xranFydomFFyx
35 34 ralrimiva AOnxA¬xranFydomFFyx
36 ffnfv F:domFxFFndomFydomFFyx
37 23 35 36 sylanbrc AOnxA¬xranFF:domFx
38 9 22 mp1i AOnxA¬xranFydomFFFndomF
39 17 ad2antrr AOnxA¬xranFydomFSmoF
40 smogt FFndomFSmoFydomFyFy
41 38 39 28 40 syl3anc AOnxA¬xranFydomFyFy
42 ordelon OrddomFydomFyOn
43 8 28 42 sylancr AOnxA¬xranFydomFyOn
44 simpll AOnxA¬xranFydomFAOn
45 44 27 sseldd AOnxA¬xranFydomFxOn
46 ontr2 yOnxOnyFyFyxyx
47 43 45 46 syl2anc AOnxA¬xranFydomFyFyFyxyx
48 41 34 47 mp2and AOnxA¬xranFydomFyx
49 48 ex AOnxA¬xranFydomFyx
50 49 ssrdv AOnxA¬xranFdomFx
51 19 50 ssexd AOnxA¬xranFdomFV
52 fex2 F:domFxdomFVxAFV
53 37 51 19 52 syl3anc AOnxA¬xranFFV
54 1 ordtype2 EWeAESeAFVFIsomE,EdomFA
55 20 21 53 54 syl3anc AOnxA¬xranFFIsomE,EdomFA
56 isof1o FIsomE,EdomFAF:domF1-1 ontoA
57 f1ofo F:domF1-1 ontoAF:domFontoA
58 forn F:domFontoAranF=A
59 55 56 57 58 4syl AOnxA¬xranFranF=A
60 19 59 eleqtrrd AOnxA¬xranFxranF
61 60 expr AOnxA¬xranFxranF
62 61 pm2.18d AOnxAxranF
63 18 62 eqelssd AOnranF=A
64 17 63 jca AOnSmoFranF=A