Metamath Proof Explorer


Theorem opreu2reuALT

Description: Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex instead. (Contributed by Thierry Arnoux, 4-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis opsbc2ie.a p=abφχ
Assertion opreu2reuALT ∃!aAbBχ∃!bBaAχ∃!pA×Bφ

Proof

Step Hyp Ref Expression
1 opsbc2ie.a p=abφχ
2 2reu4 ∃!aAbBχ∃!bBaAχaAbBχxAyBaAbBχa=xb=y
3 simpllr aAbBχxAyBaAbBχa=xb=yxA
4 simplr aAbBχxAyBaAbBχa=xb=yyB
5 opelxpi xAyBxyA×B
6 3 4 5 syl2anc aAbBχxAyBaAbBχa=xb=yxyA×B
7 nfre1 aaAbBχ
8 nfv axA
9 7 8 nfan aaAbBχxA
10 nfv ayB
11 9 10 nfan aaAbBχxAyB
12 nfra1 aaAbBχa=xb=y
13 11 12 nfan aaAbBχxAyBaAbBχa=xb=y
14 nfcv _ay
15 nfsbc1v a[˙x/a]˙χ
16 14 15 nfsbc a[˙y/b]˙[˙x/a]˙χ
17 nfcv _bA
18 nfre1 bbBχ
19 17 18 nfrexw baAbBχ
20 nfv bxA
21 19 20 nfan baAbBχxA
22 nfv byB
23 21 22 nfan baAbBχxAyB
24 nfra1 bbBχa=xb=y
25 17 24 nfral baAbBχa=xb=y
26 23 25 nfan baAbBχxAyBaAbBχa=xb=y
27 nfv baA
28 26 27 nfan baAbBχxAyBaAbBχa=xb=yaA
29 28 18 nfan baAbBχxAyBaAbBχa=xb=yaAbBχ
30 nfsbc1v b[˙y/b]˙[˙x/a]˙χ
31 rspa aAbBχa=xb=yaAbBχa=xb=y
32 31 ad5ant23 aAbBχxAyBaAbBχa=xb=yaAbBχbBχa=xb=y
33 simplr aAbBχxAyBaAbBχa=xb=yaAbBχbB
34 simpr aAbBχxAyBaAbBχa=xb=yaAbBχχ
35 rspa bBχa=xb=ybBχa=xb=y
36 35 imp bBχa=xb=ybBχa=xb=y
37 32 33 34 36 syl21anc aAbBχxAyBaAbBχa=xb=yaAbBχa=xb=y
38 37 simprd aAbBχxAyBaAbBχa=xb=yaAbBχb=y
39 37 simpld aAbBχxAyBaAbBχa=xb=yaAbBχa=x
40 sbceq1a a=xχ[˙x/a]˙χ
41 40 biimpa a=xχ[˙x/a]˙χ
42 39 34 41 syl2anc aAbBχxAyBaAbBχa=xb=yaAbBχ[˙x/a]˙χ
43 sbceq1a b=y[˙x/a]˙χ[˙y/b]˙[˙x/a]˙χ
44 43 biimpa b=y[˙x/a]˙χ[˙y/b]˙[˙x/a]˙χ
45 38 42 44 syl2anc aAbBχxAyBaAbBχa=xb=yaAbBχ[˙y/b]˙[˙x/a]˙χ
46 45 adantllr aAbBχxAyBaAbBχa=xb=yaAbBχbBχ[˙y/b]˙[˙x/a]˙χ
47 simpr aAbBχxAyBaAbBχa=xb=yaAbBχbBχ
48 29 30 46 47 r19.29af2 aAbBχxAyBaAbBχa=xb=yaAbBχ[˙y/b]˙[˙x/a]˙χ
49 simplll aAbBχxAyBaAbBχa=xb=yaAbBχ
50 13 16 48 49 r19.29af2 aAbBχxAyBaAbBχa=xb=y[˙y/b]˙[˙x/a]˙χ
51 1st2nd2 pA×Bp=1stp2ndp
52 51 ad2antlr aAbBχxAyBaAbBχa=xb=ypA×Bφp=1stp2ndp
53 nfv apA×B
54 13 53 nfan aaAbBχxAyBaAbBχa=xb=ypA×B
55 nfv aφ
56 54 55 nfan aaAbBχxAyBaAbBχa=xb=ypA×Bφ
57 nfv bpA×B
58 26 57 nfan baAbBχxAyBaAbBχa=xb=ypA×B
59 nfv bφ
60 58 59 nfan baAbBχxAyBaAbBχa=xb=ypA×Bφ
61 nfv aφ1stp=x2ndp=y
62 nfv bφ1stp=x2ndp=y
63 xp1st pA×B1stpA
64 63 ad2antlr aAbBχxAyBaAbBχa=xb=ypA×Bφ1stpA
65 xp2nd pA×B2ndpB
66 65 ad2antlr aAbBχxAyBaAbBχa=xb=ypA×Bφ2ndpB
67 eqcom 1stp=aa=1stp
68 eqcom 2ndp=bb=2ndp
69 eqopi pA×B1stp=a2ndp=bp=ab
70 69 1 syl pA×B1stp=a2ndp=bφχ
71 70 bicomd pA×B1stp=a2ndp=bχφ
72 71 ancoms 1stp=a2ndp=bpA×Bχφ
73 72 ex 1stp=a2ndp=bpA×Bχφ
74 67 68 73 syl2anbr a=1stpb=2ndppA×Bχφ
75 74 impcom pA×Ba=1stpb=2ndpχφ
76 75 ad4ant24 aAbBχxAyBaAbBχa=xb=ypA×Bφa=1stpb=2ndpχφ
77 simpl a=1stpb=2ndpa=1stp
78 77 eqeq1d a=1stpb=2ndpa=x1stp=x
79 simpr a=1stpb=2ndpb=2ndp
80 79 eqeq1d a=1stpb=2ndpb=y2ndp=y
81 78 80 anbi12d a=1stpb=2ndpa=xb=y1stp=x2ndp=y
82 81 adantl aAbBχxAyBaAbBχa=xb=ypA×Bφa=1stpb=2ndpa=xb=y1stp=x2ndp=y
83 76 82 imbi12d aAbBχxAyBaAbBχa=xb=ypA×Bφa=1stpb=2ndpχa=xb=yφ1stp=x2ndp=y
84 simpllr aAbBχxAyBaAbBχa=xb=ypA×BφaAbBχa=xb=y
85 56 60 61 62 64 66 83 84 rspc2daf aAbBχxAyBaAbBχa=xb=ypA×Bφφ1stp=x2ndp=y
86 85 com12 φaAbBχxAyBaAbBχa=xb=ypA×Bφ1stp=x2ndp=y
87 86 anabsi7 aAbBχxAyBaAbBχa=xb=ypA×Bφ1stp=x2ndp=y
88 87 simpld aAbBχxAyBaAbBχa=xb=ypA×Bφ1stp=x
89 87 simprd aAbBχxAyBaAbBχa=xb=ypA×Bφ2ndp=y
90 88 89 opeq12d aAbBχxAyBaAbBχa=xb=ypA×Bφ1stp2ndp=xy
91 52 90 eqtrd aAbBχxAyBaAbBχa=xb=ypA×Bφp=xy
92 91 ex aAbBχxAyBaAbBχa=xb=ypA×Bφp=xy
93 92 ralrimiva aAbBχxAyBaAbBχa=xb=ypA×Bφp=xy
94 6 50 93 3jca aAbBχxAyBaAbBχa=xb=yxyA×B[˙y/b]˙[˙x/a]˙χpA×Bφp=xy
95 1 opsbc2ie p=xyφ[˙y/b]˙[˙x/a]˙χ
96 95 eqreu xyA×B[˙y/b]˙[˙x/a]˙χpA×Bφp=xy∃!pA×Bφ
97 94 96 syl aAbBχxAyBaAbBχa=xb=y∃!pA×Bφ
98 97 r19.29ffa aAbBχxAyBaAbBχa=xb=y∃!pA×Bφ
99 2 98 sylbi ∃!aAbBχ∃!bBaAχ∃!pA×Bφ