Metamath Proof Explorer


Theorem ordcmp

Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o . (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordcmp OrdAACompA=AA=1𝑜

Proof

Step Hyp Ref Expression
1 orduni OrdAOrdA
2 unizlim OrdAA=AA=LimA
3 uni0b A=A
4 3 orbi1i A=LimAALimA
5 2 4 bitrdi OrdAA=AALimA
6 5 biimpd OrdAA=AALimA
7 1 6 syl OrdAA=AALimA
8 sssn AA=A=
9 0ntop ¬Top
10 cmptop CompTop
11 9 10 mto ¬Comp
12 eleq1 A=ACompComp
13 11 12 mtbiri A=¬AComp
14 13 pm2.21d A=ACompA=1𝑜
15 id A=A=
16 df1o2 1𝑜=
17 15 16 eqtr4di A=A=1𝑜
18 17 a1d A=ACompA=1𝑜
19 14 18 jaoi A=A=ACompA=1𝑜
20 8 19 sylbi AACompA=1𝑜
21 20 a1i OrdAAACompA=1𝑜
22 ordtop OrdAATopAA
23 22 biimpd OrdAATopAA
24 23 necon2bd OrdAA=A¬ATop
25 cmptop ACompATop
26 25 con3i ¬ATop¬AComp
27 24 26 syl6 OrdAA=A¬AComp
28 27 a1dd OrdAA=ALimA¬AComp
29 limsucncmp LimA¬sucAComp
30 eleq1 A=sucAACompsucAComp
31 30 notbid A=sucA¬AComp¬sucAComp
32 29 31 imbitrrid A=sucALimA¬AComp
33 32 a1i OrdAA=sucALimA¬AComp
34 orduniorsuc OrdAA=AA=sucA
35 28 33 34 mpjaod OrdALimA¬AComp
36 pm2.21 ¬ACompACompA=1𝑜
37 35 36 syl6 OrdALimAACompA=1𝑜
38 21 37 jaod OrdAALimAACompA=1𝑜
39 38 com23 OrdAACompALimAA=1𝑜
40 7 39 syl5d OrdAACompA=AA=1𝑜
41 ordeleqon OrdAAOnA=On
42 unon On=On
43 42 eqcomi On=On
44 43 unieqi On=On
45 unieq A=OnA=On
46 45 unieqd A=OnA=On
47 44 45 46 3eqtr4a A=OnA=A
48 47 orim2i AOnA=OnAOnA=A
49 41 48 sylbi OrdAAOnA=A
50 49 orcomd OrdAA=AAOn
51 50 ord OrdA¬A=AAOn
52 unieq A=AA=A
53 52 con3i ¬A=A¬A=A
54 34 ord OrdA¬A=AA=sucA
55 53 54 syl5 OrdA¬A=AA=sucA
56 orduniorsuc OrdAA=AA=sucA
57 1 56 syl OrdAA=AA=sucA
58 57 ord OrdA¬A=AA=sucA
59 suceq A=sucAsucA=sucsucA
60 58 59 syl6 OrdA¬A=AsucA=sucsucA
61 eqtr A=sucAsucA=sucsucAA=sucsucA
62 61 ex A=sucAsucA=sucsucAA=sucsucA
63 55 60 62 syl6c OrdA¬A=AA=sucsucA
64 onuni AOnAOn
65 onuni AOnAOn
66 onsucsuccmp AOnsucsucAComp
67 eleq1a sucsucACompA=sucsucAAComp
68 64 65 66 67 4syl AOnA=sucsucAAComp
69 51 63 68 syl6c OrdA¬A=AAComp
70 id A=1𝑜A=1𝑜
71 70 16 eqtrdi A=1𝑜A=
72 0cmp Comp
73 71 72 eqeltrdi A=1𝑜AComp
74 73 a1i OrdAA=1𝑜AComp
75 69 74 jad OrdAA=AA=1𝑜AComp
76 40 75 impbid OrdAACompA=AA=1𝑜