Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o . (Contributed by Chen-Pang He, 1-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduni | |
|
2 | unizlim | |
|
3 | uni0b | |
|
4 | 3 | orbi1i | |
5 | 2 4 | bitrdi | |
6 | 5 | biimpd | |
7 | 1 6 | syl | |
8 | sssn | |
|
9 | 0ntop | |
|
10 | cmptop | |
|
11 | 9 10 | mto | |
12 | eleq1 | |
|
13 | 11 12 | mtbiri | |
14 | 13 | pm2.21d | |
15 | id | |
|
16 | df1o2 | |
|
17 | 15 16 | eqtr4di | |
18 | 17 | a1d | |
19 | 14 18 | jaoi | |
20 | 8 19 | sylbi | |
21 | 20 | a1i | |
22 | ordtop | |
|
23 | 22 | biimpd | |
24 | 23 | necon2bd | |
25 | cmptop | |
|
26 | 25 | con3i | |
27 | 24 26 | syl6 | |
28 | 27 | a1dd | |
29 | limsucncmp | |
|
30 | eleq1 | |
|
31 | 30 | notbid | |
32 | 29 31 | imbitrrid | |
33 | 32 | a1i | |
34 | orduniorsuc | |
|
35 | 28 33 34 | mpjaod | |
36 | pm2.21 | |
|
37 | 35 36 | syl6 | |
38 | 21 37 | jaod | |
39 | 38 | com23 | |
40 | 7 39 | syl5d | |
41 | ordeleqon | |
|
42 | unon | |
|
43 | 42 | eqcomi | |
44 | 43 | unieqi | |
45 | unieq | |
|
46 | 45 | unieqd | |
47 | 44 45 46 | 3eqtr4a | |
48 | 47 | orim2i | |
49 | 41 48 | sylbi | |
50 | 49 | orcomd | |
51 | 50 | ord | |
52 | unieq | |
|
53 | 52 | con3i | |
54 | 34 | ord | |
55 | 53 54 | syl5 | |
56 | orduniorsuc | |
|
57 | 1 56 | syl | |
58 | 57 | ord | |
59 | suceq | |
|
60 | 58 59 | syl6 | |
61 | eqtr | |
|
62 | 61 | ex | |
63 | 55 60 62 | syl6c | |
64 | onuni | |
|
65 | onuni | |
|
66 | onsucsuccmp | |
|
67 | eleq1a | |
|
68 | 64 65 66 67 | 4syl | |
69 | 51 63 68 | syl6c | |
70 | id | |
|
71 | 70 16 | eqtrdi | |
72 | 0cmp | |
|
73 | 71 72 | eqeltrdi | |
74 | 73 | a1i | |
75 | 69 74 | jad | |
76 | 40 75 | impbid | |